Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Samuel S. Kistler showed that extremely porous silica aerogels can be made from supercritical drying of wet gels. This work, along with subsequent experimental and simulation studies, eventually led to the commercialization of silica aerogels in numerous engineering applications, especially for thermal insulation in aerospace and civil engineering applications. Rapid progress in the synthesis of silica aerogels provided great impetus for characterizing and optimizing their molecular structures. This created significant numerical challenges in understanding their structure-property-function relationship at several hierarchies of length scales. Both fully atomistic and coarse-grained molecular dynamics modeling and simulations have been extensively developed to tackle these challenges. We reviewed the development of new empirical molecular dynamics forcefields, novel methods of generating aerogels’ percolated backbones, and compelling algorithms for characterizing their structural, mechanical, and thermal properties that have resulted in unprecedented insights into silica aerogels. These developments will drive the eventual creation of a comprehensive set of multiscale modeling platforms, which can minimize the trials and errors during experimental synthesis and even bring silica aerogels into the fold of the materials-by-design paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman WC, Vlachos M, Rouanet S, Fruendt J (2001) Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J Non Cryst Solids 285:264–271

    Article  ADS  Google Scholar 

  • Aegerter MA, Leventis N, Koebel MM (eds) (2011) Aerogels handbook. Springer, New York

    Google Scholar 

  • Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354:4556–4561

    Article  ADS  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    MATH  Google Scholar 

  • Benoit C, Rahmani A, Jund P, Jullien R (2001) Numerical study of the dynamic properties of silica aerogels. J Phys Condens Mat 13:5413–5426

    Article  ADS  Google Scholar 

  • Bhattacharya S, Kieffer J (2005) Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J Chem Phys 122:094715

    Article  ADS  Google Scholar 

  • Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. Annu Rev Earth Planet Sci 34:385–418

    Article  ADS  Google Scholar 

  • Campbell T, Kalia RK, Nakano A, Shimojo F, Tsuruta K, Vashishta P, Ogata S (1999) Structural correlations and mechanical behavior in nanophase silica glasses. Phys Rev Lett 82:4018–4021

    Article  ADS  Google Scholar 

  • Cantin M, Casse M, Koch L, Jouan R, Mestreau P, Roussel D, Bonnin F, Moutel J, Teichner SJ (1974) Silica aerogels used as Cherenkov radiators. Nucl Inst Methods 118:177–182

    Article  ADS  Google Scholar 

  • Coquil T, Fang J, Pilon L (2011) Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transf 54:4540–4548

    Article  MATH  Google Scholar 

  • Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92–102

    Article  Google Scholar 

  • Cross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of SiO2 – aerogels. J Phys Colloq 50(C4):185–190

    Google Scholar 

  • Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings. Sol Energy 63:259–267

    Article  ADS  Google Scholar 

  • Ebert H-P (2011) Thermal properties of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 537–564

    Chapter  Google Scholar 

  • Ferreiro-Rangel CA, Gelb LD (2013) Investigation of the bulk modulus of silica aerogel using molecular dynamics simulations of a coarse-grained model. J Phys Chem B 117:7095–7105

    Article  Google Scholar 

  • Ferreiro-Rangel CA, Gelb LD (2015) Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. J Phys Chem B 119:8640–8650

    Article  Google Scholar 

  • Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46:111–117

    Article  ADS  Google Scholar 

  • Feuston BP, Garofalini SH (1990) Oligomerization in silica sols. J Phys Chem 94:5351–5356

    Article  Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, San Diego

    MATH  Google Scholar 

  • Fricke J (1988) Aerogels – highly tenuous solids with fascinating properties. J Non Cryst Solids 100:169–173

    Article  ADS  Google Scholar 

  • Fricke J, Emmerling A (1992) Aerogels. J Am Ceram Soc 75:2027–2036

    Article  Google Scholar 

  • Fricke J, Lu X, Wang P, Buttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transf 35:2305–2309

    Article  Google Scholar 

  • Gao T, Jelle BP, Ihara T, Gustavsen A (2014) Insulating glazing units with silica aerogel granules: the impact of particle size. Appl Energy 128:27–34

    Article  Google Scholar 

  • Garofalini S (1983) A molecular dynamics simulation of the vitreous silica surface. J Chem Phys 78:2069–2072

    Article  ADS  Google Scholar 

  • Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98:1311–1316

    Article  Google Scholar 

  • Garofalini SH, Melman H (1986) Applications of molecular dynamics simulations to sol-gel processing. MRS Proc 73:497

    Article  Google Scholar 

  • Gelb LD (2007) Simulating silica aerogels with a coarse-grained flexible model and langevin dynamics. J Phys Chem C 111:15792–15802

    Article  Google Scholar 

  • Gelb LD (2011) Simulation and modeling of aerogels using atomistic and mesoscale methods. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 565–581

    Chapter  Google Scholar 

  • Gonçalves W, Morthomas J, Chantrenne P, Perez M, Foray G, Martin CL (2016) Molecular dynamics simulations of amorphous silica surface properties with truncated Coulomb interactions. J Non Cryst Solids 447:1–8

    Google Scholar 

  • Gronauer, M, Kadur, A, Fricke, J (1986) Mechanical and acoustic properties of silica aerogel. Aerogels: Proceedings of the first international symposium, Würzburg, Fed Rep Germany, 23–25 Sept 1985, Springer, Berlin Heidelberg, pp 167–173

    Google Scholar 

  • Gross J, Reichenauer G, Fricke J (1988) Mechanical-properties of SiO2 aerogels. J Phys D Appl Phys 21:1447–1451

    Article  ADS  Google Scholar 

  • Guissani Y, Guillot B (1996) A numerical investigation of the liquid-vapor coexistence curve of silica. J Chem Phys 104:7633–7644

    Article  ADS  Google Scholar 

  • Haile J, Johnston I, Mallinckrodt AJ, McKay S (1993) Molecular dynamics simulation: elementary methods. Comput Phys 7:625–625

    Article  ADS  Google Scholar 

  • Heinemann U, Caps R, Fricke J (1996) Radiation conduction interaction: an investigation on silica aerogels. Int J Heat Mass Transf 39:2115–2130

    Article  Google Scholar 

  • Herrmann G, Iden R, Mielke M, Teich F, Ziegler B (1995) On the way to commercial production of silica aerogel. J Non Cryst Solids 186:380–387

    Article  ADS  Google Scholar 

  • Horbach J, Kob W (1999) Static and dynamic properties of a viscous silica melt. Phys Rev B 60:3169–3181

    Article  ADS  Google Scholar 

  • Horbach J, Kob W, Binder K (1999) Specific heat of amorphous silica within the harmonic approximation. J Phys Chem B 103:4104–4108

    Article  MATH  Google Scholar 

  • Hrubesh LW (1998) Aerogel applications. J Non Cryst Solids 225:335–342

    Article  ADS  Google Scholar 

  • Jelle BP, Baetens R, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energ Buildings 43:761–769

    Article  Google Scholar 

  • Jones SM (2006) Aerogel: space exploration applications. J Sol Gel Sci Technol 40:351–357

    Article  ADS  Google Scholar 

  • Jund P, Jullien R (1999) Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys Rev B 59:13707–13711

    Article  ADS  Google Scholar 

  • Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39:107–135

    Article  Google Scholar 

  • Kieffer J, Angell CA (1988) Generation of fractal structures by negative-pressure rupturing of SiO2 glass. J Non Cryst Solids 106:336–342

    Article  ADS  Google Scholar 

  • Kieffer J, Bhattacharya S (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771

    Article  Google Scholar 

  • Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741–741

    Article  ADS  Google Scholar 

  • Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    Article  Google Scholar 

  • Koebel MM, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633

    Chapter  Google Scholar 

  • Kramer GJ, Farragher NP, van Beest BW, van Santen RA (1991) Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations. Phys Rev B 43:5068–5080

    Article  ADS  Google Scholar 

  • Lei J, Liu Z, Yeo J, Ng TY (2013) Determination of the Young’s modulus of silica aerogels – an analytical-numerical approach. Soft Matter 9:11367–11373

    Article  ADS  Google Scholar 

  • Lemay JD, Tillotson TM, Hrubesh LW, Pekala RW (1990) Microstructural dependence of aerogel mechanical properties. MRS Proc 180:321

    Article  Google Scholar 

  • Liu M, Qiu L, Zheng X, Zhu J, Tang D (2014) Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation. J Appl Phys 116:093503

    Article  ADS  Google Scholar 

  • Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non Cryst Solids 188:226–234

    Article  ADS  Google Scholar 

  • Mahajan SS, Subbarayan G, Sammakia BG (2007) Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys Rev E 76:056701

    Article  ADS  Google Scholar 

  • McGaughey AJH, Kaviany M (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations part II. Complex silica structures. Int J Heat Mass Transf 47:1799–1816

    Article  MATH  Google Scholar 

  • Muller-Plathe F, Bordat P (2004) Reverse non-equilibrium molecular dynamics. Lecture Notes in Physics, vol 640. Springer, Berlin Heidelberg, pp 310–326

    Google Scholar 

  • Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci 39:334–339

    Article  Google Scholar 

  • Murillo JSR, Bachlechner ME, Campo FA, Barbero EJ (2010) Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J Non Cryst Solids 356:1325–1331

    Article  ADS  Google Scholar 

  • Nakano A, Bi L, Kalia RK, Vashishta P (1993) Structural correlations in porous silica: molecular dynamics simulation on a parallel computer. Phys Rev Lett 71:85

    Article  ADS  Google Scholar 

  • Nakano A, Bi LS, Kalia RK, Vashishta P (1994) Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B 49:9441–9452

    Article  ADS  Google Scholar 

  • Neugebauer A, Chen K, Tang A, Allgeier A, Glicksman LR, Gibson LJ (2014) Thermal conductivity and characterization of compacted, granular silica aerogel. Energ Buildings 79:47–57

    Article  Google Scholar 

  • Ng TY, Yeo JJ, Liu ZS (2012) A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. J Non Cryst Solids 358:1350–1355

    Article  ADS  Google Scholar 

  • Ng TY, Joshi SC, Yeo JJ, Liu ZS (2016) Effects of nanoporosity on the mechanical properties and applications of aerogels in composite structures. In: Meguid SA (ed) Advances in nanocomposites. Springer International Publishing, Cham, Switzerland pp 97–126

    Google Scholar 

  • Patil SP, Rege A, Sagardas, Itskov M, Markert B (2017) Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations. J Phys Chem B 121(22):5660–5668

    Article  Google Scholar 

  • Pohl PI, Faulon JL, Smith DM (1995) Molecular-dynamics computer-simulations of silica aerogels. J Non Cryst Solids 186:349–355

    Article  ADS  Google Scholar 

  • Rahmani A, Benoit C, Poussigue G (1994) A fractal model for silica aerogels. J Phys Condens Matter 6:1483

    Article  ADS  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Rubin M, Lampert CM (1983) Transparent silica aerogels for window insulation. Sol Energy Mater 7:393–400

    Article  Google Scholar 

  • Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non Cryst Solids 186:316–320

    Article  ADS  Google Scholar 

  • Shell MS, Debenedetti PG, Panagiotopoulos AZ (2002) Molecular structural order and anomalies in liquid silica. Phys Rev E Stat Nonlin Soft Matter Phys 66:011202

    Article  ADS  Google Scholar 

  • Stillinger F, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68:666–670

    Article  ADS  Google Scholar 

  • Tabata M, Imai E, Yano H, Hashimoto H, Kawai H, Kawaguchi Y, Kobayashi K, Mita H, Okudaira K, Sasaki S, Yabuta H, Yokobori S-i, Yamagishi A (2014) Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station. Trans Jpn Soc Aeronaut Space Sci, Aerosp Technol Jpn 12:Pk_29–Pk_34

    Google Scholar 

  • Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000

    Article  ADS  Google Scholar 

  • Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non Cryst Solids 145:44–50

    Article  ADS  Google Scholar 

  • Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61:869–872

    Article  ADS  Google Scholar 

  • Vacher R, Woignier T, Pelous J, Courtens E (1988a) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–6503

    Article  ADS  Google Scholar 

  • Vacher R, Woignier T, Phalippou J, Pelous J, Courtens E (1988b) Fractal structure of base catalyzed and densified silica aerogels. J Non Cryst Solids 106:161–165

    Article  ADS  Google Scholar 

  • van Beest BW, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958

    Article  ADS  Google Scholar 

  • Vashishta P, Kalia RK, Rino JP, Ebbsjo I (1990) Interaction potential for SiO2 – a molecular-dynamics study of structural correlations. Phys Rev B Condens Matter Mate Phys 41:12197–12209

    Article  ADS  Google Scholar 

  • Wei G, Liu Y, Zhang X, Yu F, Du X (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  MATH  Google Scholar 

  • Wittwer V (1989) Translucent insulation for passive solar energy utilization in buildings. Sol & Wind Technol 6:419–426

    Article  Google Scholar 

  • Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. J Phys Colloq 50(C4):179–184

    Google Scholar 

  • Woignier T, Pelous J, Phalippou J, Vacher R, Courtens E (1987) Elastic properties of silica aerogels. J Non Cryst Solids 95:1197–1202

    Article  ADS  Google Scholar 

  • Woignier T, Phalippou J, Vacher R, Pelous J, Courtens E (1990) Different kinds of fractal structures in silica aerogels. J Non Cryst Solids 121:198–201

    Article  ADS  Google Scholar 

  • Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non Cryst Solids 241:45–52

    Article  ADS  Google Scholar 

  • Woignier T, Primera J, Alaoui A, Etienne P, Despestis F, Calas-Etienne S (2015) Mechanical properties and brittle behavior of silica aerogels. Gels 1:256–275

    Article  Google Scholar 

  • Yeo JJ (2014) Modeling and simulation of the structural evolution and thermal properties of ultralight aerogel and 2D materials. Doctoral dissertation, Nanyang Technological University, Singapore

    Google Scholar 

  • Yeo JJ, Liu ZS, Ng TY (2013) Enhanced thermal characterization of silica aerogels through molecular dynamics simulation. Model Simul Mate Sci Eng 21:075004

    Article  ADS  Google Scholar 

  • Zeng JSQ, Stevens PC, Hunt AJ, Grief R, Daehee L (1996) Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int J Heat Mass Transf 39:2311–2317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gjie Yeo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yeo, J., Liu, Z., Ng, T.Y. (2020). Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_83

Download citation

Publish with us

Policies and ethics

Navigation