Continuous Random Variables: Probability Distributions and Their Applications in Hydrology

  • Chapter
  • First Online:
Fundamentals of Statistical Hydrology

Abstract

The probability distributions covered in this chapter refer to models of continuous random variables. Emphasis is given to the models that are generally employed in frequency analysis of hydrologic continuous random variables. Following the formal description of each model, the reader will find, in most cases, a brief example of its application in hydrology. The list of models detailed in this chapter is not exhaustive, as it does not include all distributions that have possible uses in Statistical Hydrology. However, the list includes other models that are not currently employed in the frequency analysis of hydrologic continuous random variables but are key elements in setting out the foundations of statistical inference, such as the sampling distributions, as well as other generally useful models, like the uniform and beta distributions. Throughout the chapter, the focus is deliberately kept on describing the models, their main shape characteristics, and usual applications, and not on systematically providing mathematical proofs for expected values and other population descriptors. By the end of the chapter, the normal bivariate model and the principles for building copulas, for describing the dependence structure between variables, are introduced, as an illustration of multivariate probability distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Ajayi GO, Olsen RL (1985) Modelling of a raindrop size distribution for microwave and millimetre wave applications. Radio Sci 20(2):193–202

    Article  Google Scholar 

  • Ang H-SA, Tang WH (1990) Probability concepts in engineering planning and design, volume II: decision, risk, and reliability. Copyright Ang & Tang

    Google Scholar 

  • Beard LR (1962) Statistical methods in hydrology (Civil Works Investigations Project CW-151). United States Army Engineer District. Corps of Engineers, Sacramento, CA

    Google Scholar 

  • Benjamin JR, Cornell CA (1970) Probability, statistics, and decision for civil engineers. McGraw-Hill, New York

    Google Scholar 

  • Benson MA (1968) Uniform flood-frequency estimating methods for federal agencies. Water Resour Res 4(5):891–908

    Article  Google Scholar 

  • Beran M, Hosking JRM, Arnell NW (1986) Comment on “TCEV distribution for flood frequency analysis”. Water Resouces Res 22(2):263–266

    Article  Google Scholar 

  • Bobée B, Ashkar F (1991) The gamma family and derived distributions applied in hydrology. Water Resources Publications, Littleton, CO

    Google Scholar 

  • Cannarozzo M, D'Asaro F, Ferro V (1995) Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution. Hydrol Sci J 40(1):19–42. doi:10.1080/02626669509491388

    Article  Google Scholar 

  • Castillo E (1988) Extreme value theory in engineering. Academic, Boston

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Dalrymple T (1960) Flood-frequency analyses, Manual of Hydrology: Part.3. Flood-flow Techniques, Geological Survey Water Supply Paper 1543-A. Government Printing Office, Washington

    Google Scholar 

  • Fiorentino M, Gabriele S, Rossi F, Versace P (1987) Hierarchical approach for regional flood frequency analysis. In: Singh VP (ed) Regional flood frequency analysis. Reidel, Dordrecht

    Google Scholar 

  • Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical proceedings of the Cambridge Philosophical Society, vol 24, pp 180–190. DOI:10.1017/S0305004100015681

  • Fréchet M (1927) Sur la loi de probabilité de l’écart maximum. Annales de la Societé Polonaise de Mathématique 6(92):116

    Google Scholar 

  • Freeze RA (1975) A stochastic conceptual analysis of one-dimensional ground-water flow in non-uniform homogeneous media. Water Resour Res 11:725–741

    Article  Google Scholar 

  • Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2009). mvtnorm: Multivariate normal and t Distributions. R package version 0.9-8. http://CRAN.R-project.org/package = mvtnorm

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d'une série aléatoire. Ann Mathematics Second Series 44(3):423–453

    Article  Google Scholar 

  • Gumbel EJ (1958) Statistics of Extremes. Columbia University Press, New York

    Google Scholar 

  • Haan CT (1977) Statistical methods in hydrology. The Iowa University Press, Ames, IA

    Google Scholar 

  • Hosking JRM (1988) The 4-parameter Kappa distribution. IBM Research Report RC 13412. IBM Research, Yorktown Heights, NY

    Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L‐moments. Cambridge Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Houghton J (1978) Birth of a parent: the Wakeby distribution for modeling flood flows. Water Resour Res 15(6):1361–1372

    Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q J Roy Meteorol Soc 81:158–171

    Article  Google Scholar 

  • Juncosa ML (1949) The asymptotic behavior of the minimum in a sequence of random variables. Duke Math J 16(4):609–618

    Article  Google Scholar 

  • Kendall MG, Stuart A (1963) The advanced theory of statistics, vol I, Distribution theory. Griffin, London

    Google Scholar 

  • Kite GW (1988) Frequencyd and risk analysis in hydrology. Water Resources Publications, Fort Collins, CO

    Google Scholar 

  • Kottegoda NT, Rosso R (1997) Statistics, probability, and reliability for civil and environmental engineers. McGraw-Hill, New York

    Google Scholar 

  • Leadbetter MR (1974) On extreme values in stationary sequences. Probab Theory Relat Fields 28(4):289–303

    Google Scholar 

  • Leadbetter MR (1983) Extremes and local dependence in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 65:291–306

    Article  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  Google Scholar 

  • Murphy PJ (2001) Evaluation of mixed‐population flood‐frequency analysis. J Hydrol Eng 6:62–70

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, ser. Lecture notes in statistics. Springer, New York

    Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2013) The battle of extreme distributions: a global survey on the extreme daily rainfall. Water Resour Res 49(1):187–201

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D, Makropoulos C (2013) How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol Earth Syst Sci 17:851–862

    Article  Google Scholar 

  • Perichi LR, Rodríguez-Iturbe I (1985) On the statistical analysis of floods. In: Atkinson AC, Feinberg SE (eds) A celebration of statistics. Springer, New York, pp 511–541

    Chapter  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Article  Google Scholar 

  • Pollard JH (1977) A handbook of numerical and statistical techniques. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Press W, Teukolsky SA, Vetterling WT, Flannery BP (1986) Numerical recipes in Fortran 77—the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Rossi FM, Fiorentino M, Versace P (1984) Two component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856

    Article  Google Scholar 

  • Rozanov YA (1969) Probability theory: a concise course. Dover, New York

    Google Scholar 

  • Salvadori G, De Michele C (2010) Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour Res 46(10):1

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas, vol 56. Springer Science & Business Media

    Google Scholar 

  • Serinaldi F (2015) Dismissing return periods! Stochastic Environ Res Risk Assessment 29(4):1179–1189

    Article  Google Scholar 

  • Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publication de l’Institut de Statistique de l’Université de Paris 8:229–231

    Google Scholar 

  • Stahl S (2006) The evolution of the normal distribution. Math Mag 79(2):96–113

    Article  Google Scholar 

  • Stedinger JR, Griffis VW (2008) Flood frequency analysis in the United States: time to update. J Hydrol Eng 13(4):199–204

    Article  Google Scholar 

  • Stedinger JR, Griffis VW (2011) Getting from here to where? Flood frequency analysis and climate. J Am Water Resour Assoc 47(3):506–513

    Article  Google Scholar 

  • Vlcek O, Huth R (2009) Is daily precipitation gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov-Smirnov test. Atmos Res 93:759–766

    Article  Google Scholar 

  • Waylen PR, Woo MK (1984) Regionalization and prediction of floods in the Fraser river catchment. Water Resour Bull 20(6):941–949

    Article  Google Scholar 

  • WRC (1967, 1975, 1976, 1977, 1981) Guidelines for determining flood flow frequency, Bulletin 15 (1975), Bulletin 17 (1976), Bulletin 17A (1977), Bulletin 17B (1981). United States Water Resources Council-Hydrology Committee, Washington

    Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Software 21(4):1–21

    Article  Google Scholar 

  • Yevjevich VM (1972) Probability and statistics in hydrology. Water Resources Publications, Fort Collins, CO

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Naghettini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naghettini, M., Silva, A.T. (2017). Continuous Random Variables: Probability Distributions and Their Applications in Hydrology. In: Naghettini, M. (eds) Fundamentals of Statistical Hydrology. Springer, Cham. https://doi.org/10.1007/978-3-319-43561-9_5

Download citation

Publish with us

Policies and ethics

Navigation