Biphasic Theory and the Biology of Tooth Movement

  • Chapter
  • First Online:
Clinical Guide to Accelerated Orthodontics

Abstract

Teeth move through alveolar bone through naturally occurring drift or in response to orthodontic forces. Orthodontists want to optimize this movement while reducing potential risk factors. Orthodontic researchers have taken on this clinical challenge by uncovering the biological phenomena associated with tooth movement. It was believed that teeth move due to compression and tension of the alveolar bone induced by orthodontic forces that cause bone resorption and formation respectively. However, research on bone biology has shown that bone does not respond to static forces, and in fact, bone is not the target of our orthodontic forces. In this chapter, we show how orthodontic forces stimulate an inflammatory response in periodontal ligaments (PDL) that in turn activates the bone remodeling machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mosley JR, March BM, Lynch J, Lanyon LE. Strain magnitude related changes in whole bone architecture in growing rats. Bone. 1997;20(3):191–8.

    Article  PubMed  Google Scholar 

  2. O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech. 1982;15(10):767–81.

    Article  PubMed  Google Scholar 

  3. Rubin CT, Lanyon LE. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res. 1987;5(2):300–10.

    Article  PubMed  Google Scholar 

  4. Qin YX, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech. 2003;36(10):1427–37.

    Article  PubMed  Google Scholar 

  5. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.

    Article  PubMed  Google Scholar 

  6. Alikhani M, Khoo E, Alyami B, Raptis M, Salgueiro JM, Oliveira SM, et al. Osteogenic effect of high-frequency acceleration on alveolar bone. J Dent Res. 2012;91(4):413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Verna C, Dalstra M, Lee TC, Melsen B. Microdamage in porcine alveolar bone due to functional and orthodontic loading. Eur J Morphol. 2005;42(1–2):3–11.

    Article  PubMed  Google Scholar 

  8. Alikhani M, Alansari S, Sangsuwon C, Bin Lee Y, Alikhani M, Khoo E, et al. Biological mechanisms to accelerate tooth movement. 1. 1st ed. Elsevier, Academic Press, Boston; 2015. p. 787–98.

    Google Scholar 

  9. Taddei SR, Andrade Jr I, Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2012;141(2):153–60.

    Article  Google Scholar 

  10. de Albuquerque Taddei SR, Queiroz-Junior CM, Moura AP, Andrade Jr I, Garlet GP, Proudfoot AE, et al. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone. 2013;52(1):259–67.

    Article  Google Scholar 

  11. Andrade Jr I, Taddei SRA, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009;88(11):1037–41.

    Article  PubMed  Google Scholar 

  12. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355–62.

    Article  PubMed  Google Scholar 

  13. Perkins DJ, Kniss DA. Tumor necrosis factor-alpha promotes sustained cyclooxygenase-2 expression: attenuation by dexamethasone and NSAIDs. Prostaglandins. 1997;54(4):727–43.

    Article  PubMed  Google Scholar 

  14. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LBA, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063–73.

    PubMed  Google Scholar 

  15. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lundy FT, Linden GJ. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med. 2004;15(2):82–98.

    Article  PubMed  Google Scholar 

  17. Fuller K, Kirstein B, Chambers TJ. Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology. 2006;147(4):1979–85.

    Article  PubMed  Google Scholar 

  18. Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T. Interleukin-1 alpha activates an NF-kappaB-like factor in osteoclast-like cells. J Biol Chem. 1996;271(9):4605–8.

    Article  PubMed  Google Scholar 

  19. O’Brien CA, Gubrij I, Lin SC, Saylors RL, Manolagas SC. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem. 1999;274(27):19301–8.

    Article  PubMed  Google Scholar 

  20. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, et al. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology. 2000;141(4):1554–9.

    Article  PubMed  Google Scholar 

  21. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol. 2001;46(2):185–9.

    Article  PubMed  Google Scholar 

  23. Kesavalu L, Chandrasekar B, Ebersole JL. In vivo induction of proinflammatory cytokines in mouse tissue by Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol. 2002;17(3):177–80.

    Article  PubMed  Google Scholar 

  24. Jager A, Zhang D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod. 2005;27(1):1–11.

    Article  PubMed  Google Scholar 

  25. Andrade Jr I, Silva TA, Silva GA, Teixeira AL, Teixeira MM. The role of tumor necrosis factor receptor type 1 in orthodontic tooth movement. J Dent Res. 2007;86(11):1089–94.

    Article  PubMed  Google Scholar 

  26. Yoshimatsu M, Shibata Y, Kitaura H, Chang X, Moriishi T, Hashimoto F, et al. Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. J Bone Miner Metab. 2006;24(1):20–7.

    Article  PubMed  Google Scholar 

  27. DeLaurier A, Allen S, deFlandre C, Horton MA, Price JS. Cytokine expression in feline osteoclastic resorptive lesions. J Comp Pathol. 2002;127(2–3):169–77.

    Article  PubMed  Google Scholar 

  28. Chumbley AB, Tuncay OC. The effect of indomethacin (an aspirin-like drug) on the rate of orthodontic tooth movement. Am J Orthod. 1986;89(4):312–4.

    Article  PubMed  Google Scholar 

  29. Knop LA, Shintcovsk RL, Retamoso LB, Ribeiro JS, Tanaka OM. Non-steroidal and steroidal anti-inflammatory use in the context of orthodontic movement. Eur J Orthod. 2012;34(5):531–5.

    Article  PubMed  Google Scholar 

  30. Mohammed AH, Tatakis DN, Dziak R. Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1989;95(3):231–7.

    Article  Google Scholar 

  31. Quinn RS, Yoshikawa DK. A reassessment of force magnitude in orthodontics. Am J Orthod. 1985;88(3):252–60.

    Article  PubMed  Google Scholar 

  32. Ren Y, Maltha JC, Van’t Hof MA, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: a mathematic model. Am J Orthod Dentofac Orthop. 2004;125(1):71–7.

    Article  Google Scholar 

  33. Yee JA, Turk T, Elekdag-Turk S, Cheng LL, Darendeliler MA. Rate of tooth movement under heavy and light continuous orthodontic forces. Am J Orthod Dentofacial Orthop. 2009;136(2):150. e1–9; discussion –1.

    Article  PubMed  Google Scholar 

  34. Alikhani M, Alyami B, Lee IS, Almoammar S, Vongthongleur T, Alikhani M, Alansari S, Sangsuawon C, Chou M, Khoo E, Boskey A, Teixeia C. Biological saturation point during orthodontic tooth movement. Orthod Craniofacial Res. 2015;18(1):8–17.

    Article  Google Scholar 

  35. Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, et al. Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res. 2001;16(1):24–32.

    Article  PubMed  Google Scholar 

  36. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4.

    Article  PubMed  Google Scholar 

  37. Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One. 2007;2(7):e653.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bassett CA. Biologic significance of piezoelectricity. Calcif Tissue Res. 1968;1(4):252–72.

    PubMed  Google Scholar 

  39. Hert J, Liskova M, Landrgot B. Influence of the long-term, continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphol (Praha). 1969;17(4):389–99.

    Google Scholar 

  40. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina C. Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Teixeira, C.C., Alansari, S., Sangsuwon, C., Nervina, J., Alikhani, M. (2017). Biphasic Theory and the Biology of Tooth Movement. In: Alikhani, M. (eds) Clinical Guide to Accelerated Orthodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-43401-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43401-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43399-8

  • Online ISBN: 978-3-319-43401-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation