Corpus Luteum and Early Pregnancy in Ruminants

  • Chapter
  • First Online:
The Life Cycle of the Corpus Luteum

Abstract

This review examines the function of the corpus luteum (CL) with emphasis on pregnancy in ruminant models and the possible impact of pregnancy in conferring luteal resistance to prostaglandin F2α (PGF2α). Critical processes involved with formation of the CL impact the capacity to secrete progesterone. Similarly, complete luteolysis is critically important in the event that pregnancy does not occur so that a new ovulation and opportunity for pregnancy is established. It is well known that serum progesterone must reach a critical nadir if ovulation and fertilization are to occur. Following fertilization, the function of the CL in providing adequate progesterone is critical in setting up an endometrial environment so that pregnancy is maintained. Benefits of supplemental progesterone during early pregnancy are inconsistent in ruminants. However, recent studies indicate that supplemental progesterone following artificial insemination (AI) may depend on the presence of the CL and the amount of progesterone released from the CL. The primary signal for maternal recognition of pregnancy, interferon-tau (IFNT), is secreted from the ruminant conceptus (embryo proper and extraembryonic membranes). IFNT disrupts release of PGF2α from the endometrium and is antiluteolytic through inhibiting uterine expression of the estradiol receptor (ESR1) or the oxytocin receptor (OXTR). Endocrine action of IFNT on peripheral blood mononuclear cells and on the CL may also contribute to immunomodulatory function and longer-term sustainability and function of the CL as pregnancy progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spencer TE, Burghardt RC, Johnson GA, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Anim Reprod Sci. 2004;82-83:537–50.

    Article  CAS  PubMed  Google Scholar 

  2. Leavitt WW, Okulicz WC, McCracken JA, Schramm W, Robidoux Jr WF. Rapid recovery of nuclear estrogen receptor and oxytocin receptor in the ovine uterus following progesterone withdrawal. J Steroid Biochem. 1985;22(6):687–91.

    Article  CAS  PubMed  Google Scholar 

  3. Allison Gray C, Bartol FF, Taylor KM, Wiley AA, Ramsey WS, Ott TL, Bazer FW, Spencer TE. Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle. Biol Reprod. 2000;62(2):448–56.

    Article  CAS  PubMed  Google Scholar 

  4. Moore LG, Choy VJ, Elliot RL, Watkins WB. Evidence for the pulsatile release of PGF-2 alpha inducing the release of ovarian oxytocin during luteolysis in the ewe. J Reprod Fertil. 1986;76(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  5. Banu SK, Arosh JA, Chapdelaine P, Fortier MA. Expression of prostaglandin transporter in the bovine uterus and fetal membranes during pregnancy. Biol Reprod. 2005;73(2):230–6.

    Article  CAS  PubMed  Google Scholar 

  6. McCracken JA, Carlson JC, Glew ME, Goding JR, Baird DT, Green K, Samuelsson B. Prostaglandin F2 identified as a luteolytic hormone in sheep. Nat New Biol. 1972;238(83): 129–34.

    Article  CAS  PubMed  Google Scholar 

  7. Inskeep EK, Butcher RL. Local component of utero-ovarian relationships in the ewe. J Anim Sci. 1966;25(4):1164–8.

    Article  CAS  PubMed  Google Scholar 

  8. Goding JR, Harrison FA, Heap RB, Linzell JL. Ovarian activity in the ewe after autotransplantation of the ovary or uterus to the neck. J Physiol. 1967;191(2):129P–30.

    CAS  PubMed  Google Scholar 

  9. McCracken JA, Glew ME, Scaramuzzi RJ. Corpus luteum regression induced by prostaglandin F2-alpha. J Clin Endocrinol Metab. 1970;30(4):544–6.

    Article  CAS  PubMed  Google Scholar 

  10. Wiltbank J, Casida L. Alteration of ovarian activity by hysterectomy. J Anim Sci. 1956;15:134.

    Article  Google Scholar 

  11. Senger PL. Pathways to pregnancy and parturition, 3rd edn. Pullman: Current Conceptions; 2012. 381 p.

    Google Scholar 

  12. Moor RM, Rowson LE. Local uterine mechanisms affecting luteal function in the sheep. J Reprod Fertil. 1966;11(2):307–10.

    Article  CAS  PubMed  Google Scholar 

  13. Spencer TE, Bazer FW. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the ewe. Biol Reprod. 1995;53(6):1527–43.

    Article  CAS  PubMed  Google Scholar 

  14. Barcikowski B, Carlson J, Wilson L, McCracken JA. The effect of endogenous and exogenous estradiol-17beta on the release of prostaglandin F2alpha from the ovine uterus. J Endocrinol. 1974;95(5):1340–9.

    Article  CAS  Google Scholar 

  15. Hixon J, Flint A. Effects of a luteolytic dose of oestradiol benzoate on uterine oxytocin receptor concentrations, phosphoinositide turnover and prostaglandin F-2 alpha secretion in sheep. J Reprod Fertil. 1987;79:457–67.

    Article  CAS  PubMed  Google Scholar 

  16. Wathes D, Lamming G. The oxytocin receptor, luteolysis and the maintenance of pregnancy. J Reprod Fertil. 1995;49:53–67.

    CAS  Google Scholar 

  17. McCracken J, Schramm W, Baricikowski B, Wilson LJ. The identification of prostaglandin F2 alpha as a uterine luteolytic hormone and the hormonal control of its synthesis. Acta Vet Scand. 1981;(suppl 77):71–88.

    Google Scholar 

  18. Hansel W. Luteotrophic and luteolytic mechanisms in bovine corpora lutea. J Reprod Fertil Suppl. 1966;1:33–48.

    Google Scholar 

  19. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17(3):221–44.

    CAS  PubMed  Google Scholar 

  20. Niswender GD, Davis TL, Griffith RJ, Bogan RL, Monser K, Bott RC, Bruemmer JE, Nett TM. Judge, jury and executioner: the auto-regulation of luteal function. Soc Reprod Fertil Suppl. 2007;64:191–206.

    CAS  PubMed  Google Scholar 

  21. Wiltbank MC, Ottobre JS. Regulation of intraluteal production of prostaglandins. Reprod Biol Endocrinol. 2003;1:91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiltbank MC, Guthrie PB, Mattson MP, Kater SB, Niswender GD. Hormonal regulation of free intracellular calcium concentrations in small and large ovine luteal cells. Biol Reprod. 1989;41(4):771–8.

    Article  CAS  PubMed  Google Scholar 

  23. Vinatier D, Dufour P, Subtil D. Apoptosis: a programmed cell death involved in ovarian and uterine physiology. Eur J Obstet Gynecol Reprod Biol. 1996;67(2):85–102.

    Article  CAS  PubMed  Google Scholar 

  24. Mondal M, Schilling B, Folger J, Steibel JP, Buchnick H, Zalman Y, Ireland JJ, Meidan R, Smith GW. Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F(2)alpha. Physiol Genomics. 2011;43(8):447–56.

    Article  CAS  PubMed  Google Scholar 

  25. Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, Davis JS, Hansen TR. Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiol Genomics. 2013;45(22):1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moor RM, Rowson LE. The corpus luteum of the sheep: functional relationship between the embryo and the corpus luteum. J Endocrinol. 1966;34(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mapletoft RJ, Lapin DR, Ginther OJ. The ovarian artery as the final component of the local luteotropic pathway between a gravid uterine horn and ovary in ewes. Biol Reprod. 1976;15(3):414–21.

    Article  CAS  PubMed  Google Scholar 

  28. Inskeep EK, Smutny WJ, Butcher RL, Pexton JE. Effects of intrafollicular injections of prostaglandins in non-pregnant and pregnant ewes. J Anim Sci. 1975;41(4):1098–104.

    Article  CAS  PubMed  Google Scholar 

  29. Mapletoft RJ, Del Campo MR, Ginther OJ. Local venoarterial pathway for uterine-induced luteolysis in cows. Proc Soc Exp Biol Med. 1976;153(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  30. Pratt BR, Butcher RL, Inskeep EK. Antiluteolytic effect of the conceptus and of PGE2 in ewes. J Anim Sci. 1977;45(4):784–91.

    Article  CAS  PubMed  Google Scholar 

  31. Silvia WJ, Niswender GD. Maintenance of the corpus luteum of early pregnancy in the ewe. III. Differences between pregnant and nonpregnant ewes in luteal responsiveness to prostaglandin F2 alpha. J Anim Sci. 1984;59(3):746–53.

    Article  CAS  PubMed  Google Scholar 

  32. Roberts RM, **e S, Mathialagan N. Maternal recognition of pregnancy. Biol Reprod. 1996;54(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  33. Godkin JD, Bazer FW, Moffatt J, Sessions F, Roberts RM. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13–21. J Reprod Fertil. 1982;65(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  34. Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature (Lond). 1987;330(6146):377–9.

    Article  CAS  Google Scholar 

  35. Hansen TR, Henkes LK, Ashley RL, Bott RC, Antoniazzi AQ, Han H. Endocrine actions of interferon-tau in ruminants. Soc Reprod Fertil Suppl. 2010;67:325–40.

    CAS  PubMed  Google Scholar 

  36. Spencer TE, Hansen TR. Implantation and establishment of pregnancy in ruminants. Adv Anat Embryol Cell Biol. 2015;216:105–35.

    Article  PubMed  Google Scholar 

  37. Silva PJ, Juengel JL, Rollyson MK, Niswender GD. Prostaglandin metabolism in the ovine corpus luteum: catabolism of prostaglandin F(2alpha) (PGF(2alpha)) coincides with resistance of the corpus luteum to PGF(2alpha). Biol Reprod. 2000;63(5):1229–36.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson Jr L, Butcher RL, Inskeep EK. Prostaglandin F2alpha in the uterus of ewes during early pregnancy. Prostaglandins. 1972;1(6):479–82.

    Article  CAS  PubMed  Google Scholar 

  39. Bazer FW, Ying W, Wang X, Dunlap KA, Zhou B, Johnson GA, Wu G. The many faces of interferon tau. Amino Acids. 2015;47(3):449–60.

    Article  CAS  PubMed  Google Scholar 

  40. Hansen PJ, Anthony RV, Bazer FW, Baumbach GA, Roberts RM. In vitro synthesis and secretion of ovine trophoblast protein-1 during the period of maternal recognition of pregnancy. Endocrinology. 1985;117(4):1424–30.

    Article  CAS  PubMed  Google Scholar 

  41. Moor RM, Rowson LE. Influence of the embryo and uterus on luteal function in the sheep. Nature (Lond). 1964;201:522–3.

    Article  CAS  Google Scholar 

  42. Moor RM, Rowson LE. The corpus luteum of the sheep: effect of the removal of embryos on luteal function. J Endocrinol. 1966;34(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  43. Bazer FW, Roberts RM. Biochemical aspects of conceptus–endometrial interactions. J Exp Zool. 1983;228(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  44. Bazer FW, Thatcher WW, Hansen PJ, Mirando MA, Ott TL, Plante C. Physiological mechanisms of pregnancy recognition in ruminants. J Reprod Fertil Suppl. 1991;43:39–47.

    CAS  PubMed  Google Scholar 

  45. Roberts RM, Cross JC, Leaman DW. Interferons as hormones of pregnancy. Endocr Rev. 1992;13(3):432–52.

    CAS  PubMed  Google Scholar 

  46. Austin KJ, Ward SK, Teixeira MG, Dean VC, Moore DW, Hansen TR. Ubiquitin cross-reactive protein is released by the bovine uterus in response to interferon during early pregnancy. Biol Reprod. 1996;54(3):600–6.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson GA, Austin KJ, Van Kirk EA, Hansen TR. Pregnancy and interferon-tau induce conjugation of bovine ubiquitin cross-reactive protein to cytosolic uterine proteins. Biol Reprod. 1998;58(4):898–904.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson GA, Stewart MD, Gray CA, Choi Y, Burghardt RC, Yu-Lee LY, Bazer FW, Spencer TE. Effects of the estrous cycle, pregnancy, and interferon tau on 2′,5′-oligoadenylate synthetase expression in the ovine uterus. Biol Reprod. 2001;64(5):1392–9.

    Article  CAS  PubMed  Google Scholar 

  49. Staggs KL, Austin KJ, Johnson GA, Teixeira MG, Talbott CT, Dooley VA, Hansen TR. Complex induction of bovine uterine proteins by interferon-tau. Biol Reprod. 1998;59(2):293–7.

    Article  CAS  PubMed  Google Scholar 

  50. Teixeira MG, Austin KJ, Perry DJ, Dooley VD, Johnson GA, Francis BR, Hansen TR. Bovine granulocyte chemotactic protein-2 is secreted by the endometrium in response to interferon-tau (IFN-tau). Endocrine. 1997;6(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ashworth CJ, Bazer FW. Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone. Biol Reprod. 1989;40(2):425–33.

    Article  CAS  PubMed  Google Scholar 

  52. Romero JJ, Antoniazzi AQ, Nett TM, Ashley RL, Webb BT, Smirnova NP, Bott RC, Bruemmer JE, Bazer FW, Anthony RV, Hansen TR. Temporal release, paracrine and endocrine actions of ovine conceptus-derived interferon-tau during early pregnancy. Biol Reprod. 2015;93(6):146.

    Article  PubMed  CAS  Google Scholar 

  53. Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW. Ovine interferon-tau inhibits estrogen receptor up-regulation and estrogen-induced luteolysis in cyclic ewes. Endocrinology. 1995;136(11):4932–44.

    CAS  PubMed  Google Scholar 

  54. Ott TL, Fleming JG, Spencer TE, Joyce MM, Chen P, Green CN, Zhu D, Welsh Jr TH, Harms PG, Bazer FW. Effects of exogenous recombinant ovine interferon tau on circulating concentrations of progesterone, cortisol, luteinizing hormone, and antiviral activity; interestrous interval; rectal temperature; and uterine response to oxytocin in cyclic ewes. Biol Reprod. 1997;57(3):621–9.

    Article  CAS  PubMed  Google Scholar 

  55. Thatcher WW, Bartol FF, Knickerbocker JJ, Curl JS, Wolfenson D, Bazer FW, Roberts RM. Maternal recognition of pregnancy in cattle. J Dairy Sci. 1984;67(11):2797–811.

    Article  CAS  PubMed  Google Scholar 

  56. Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL, Smirnova NP, Henkes LE, Bott RC, Oliveira JF, Niswender GD, Bazer FW, Hansen TR. Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2 alpha-induced luteolysis in ewes. Biol Reprod. 2013;88(6):144.

    Article  PubMed  Google Scholar 

  57. Bott RC, Ashley RL, Henkes LE, Antoniazzi AQ, Bruemmer JE, Niswender GD, Bazer FW, Spencer TE, Smirnova NP, Anthony RV, Hansen TR. Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biol Reprod. 2010;82(4):725–35.

    Article  CAS  PubMed  Google Scholar 

  58. Oliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DN, Anthony RV, Hansen TR. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein. Endocrinology. 2008;149(3):1252–9.

    Article  CAS  PubMed  Google Scholar 

  59. Bebington C, Bell SC, Doherty FJ, Fazleabas AT, Fleming SD. Localization of ubiquitin and ubiquitin cross-reactive protein in human and baboon endometrium and decidua during the menstrual cycle and early pregnancy. Biol Reprod. 1999;60(4):920–8.

    Article  CAS  PubMed  Google Scholar 

  60. Bebington C, Doherty FJ, Fleming SD. Ubiquitin cross-reactive protein gene expression is increased in decidualized endometrial stromal cells at the initiation of pregnancy. Mol Hum Reprod. 1999;5(10):966–72.

    Article  CAS  PubMed  Google Scholar 

  61. Austin KJ, Carr AL, Pru JK, Hearne CE, George EL, Belden EL, Hansen TR. Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy. Endocrinology. 2004;145(2):967–75.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson GA, Spencer TE, Hansen TR, Austin KJ, Burghardt RC, Bazer FW. Expression of the interferon tau inducible ubiquitin cross-reactive protein in the ovine uterus. Biol Reprod. 1999;61(1):312–8.

    Article  CAS  PubMed  Google Scholar 

  63. Johnson GA, Bazer FW, Burghardt RC, Spencer TE, Wu G, Bayless KJ. Conceptus–uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptuses. Soc Reprod Fertil Suppl. 2009;66:321–32.

    CAS  PubMed  Google Scholar 

  64. Ashley RL, Henkes LE, Bouma GJ, Pru JK, Hansen TR. Deletion of the Isg15 gene results in up-regulation of decidual cell survival genes and down-regulation of adhesion genes: implication for regulation by IL-1beta. Endocrinology. 2010;151(9):4527–36.

    Article  CAS  PubMed  Google Scholar 

  65. Austin KJ, Bany BM, Belden EL, Rempel LA, Cross JC, Hansen TR. Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology. 2003;144(7):3107–13.

    Article  CAS  PubMed  Google Scholar 

  66. Henkes LE, Pru JK, Ashley RL, Anthony RV, Veeramachaneni DN, Gates KC, Hansen TR. Embryo mortality in Isg15−/− mice is exacerbated by environmental stress. Biol Reprod. 2015;92(2):36.

    Article  PubMed  CAS  Google Scholar 

  67. Naivar KA, Ward SK, Austin KJ, Moore DW, Hansen TR. Secretion of bovine uterine proteins in response to type I interferons. Biol Reprod. 1995;52(4):848–54.

    Article  CAS  PubMed  Google Scholar 

  68. Ott TL, Yin J, Wiley AA, Kim HT, Gerami-Naini B, Spencer TE, Bartol FF, Burghardt RC, Bazer FW. Effects of the estrous cycle and early pregnancy on uterine expression of Mx protein in sheep (Ovis aries). Biol Reprod. 1998;59(4):784–94.

    Article  CAS  PubMed  Google Scholar 

  69. Mirando MA, Short Jr EC, Geisert RD, Vallet JL, Bazer FW. Stimulation of 2′,5′-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-1, and by intramuscular administration of recombinant bovine interferon-alpha I1. J Reprod Fertil. 1991;93(2):599–607.

    Article  CAS  PubMed  Google Scholar 

  70. Schmitt RA, Geisert RD, Zavy MT, Short EC, Blair RM. Uterine cellular changes in 2′,5′-oligoadenylate synthetase during the bovine estrous cycle and early pregnancy. Biol Reprod. 1993;48(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  71. Rosenfeld CS, Han CS, Alexenko AP, Spencer TE, Roberts RM. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod. 2002;67(3):847–53.

    Article  CAS  PubMed  Google Scholar 

  72. Stewart DM, Johnson GA, Vyhlidal CA, Burghardt RC, Safe SH, Yu-Lee LY, Bazer FW, Spencer TE. Interferon-tau activates multiple signal transducer and activator of transcription proteins and has complex effects on interferon-responsive gene transcription in ovine endometrial epithelial cells. Endocrinology. 2001;142(1):98–107.

    CAS  PubMed  Google Scholar 

  73. Perry DJ, Austin KJ, Hansen TR. Cloning of interferon-stimulated gene 17: the promoter and nuclear proteins that regulate transcription. Mol Endocrinol. 1999;13(7):1197–206.

    Article  CAS  PubMed  Google Scholar 

  74. Choi Y, Johnson GA, Burghardt RC, Berghman LR, Joyce MM, Taylor KM, Stewart MD, Bazer FW, Spencer TE. Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol Reprod. 2001;65(4):1038–49.

    Article  CAS  PubMed  Google Scholar 

  75. Lonergan P, Forde N. The role of progesterone in maternal recognition of pregnancy in domestic ruminants. Adv Anat Embryol Cell Biol. 2015;216:87–104.

    Article  PubMed  Google Scholar 

  76. Spencer TE, Forde N, Lonergan P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci. 2016;99(7):5941–50.

    Article  CAS  Google Scholar 

  77. Wiltbank MC, Souza AH, Carvalho PD, Cunha AP, Giordano JO, Fricke PM, Baez GM, Diskin MG. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal. 2014;8 suppl 1:70–81.

    Article  CAS  PubMed  Google Scholar 

  78. Carvalho PD, Fuenzalida MJ, Ricci A, Souza AH, Barletta RV, Wiltbank MC, Fricke PM. Modifications to Ovsynch improve fertility during resynchronization: evaluation of presynchronization with gonadotropin-releasing hormone 6 d before initiation of Ovsynch and addition of a second prostaglandin F2alpha treatment. J Dairy Sci. 2015;98(12):8741–52.

    Article  CAS  PubMed  Google Scholar 

  79. Bisinotto RS, Castro LO, Pansani MB, Narciso CD, Martinez N, Sinedino LD, Pinto TL, Van de Burgwal NS, Bosman HM, Surjus RS, Thatcher WW, Santos JE. Progesterone supplementation to lactating dairy cows without a corpus luteum at initiation of the Ovsynch protocol. J Dairy Sci. 2015;98(4):2515–28.

    Article  CAS  PubMed  Google Scholar 

  80. Bisinotto RS, Lean IJ, Thatcher WW, Santos JE. Meta-analysis of progesterone supplementation during timed artificial insemination programs in dairy cows. J Dairy Sci. 2015;98(4):2472–87.

    Article  CAS  PubMed  Google Scholar 

  81. Kerbler TL, Buhr MM, Jordan LT, Leslie KE, Walton JS. Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle. Theriogenology. 1997;47(3):703–14.

    Article  CAS  PubMed  Google Scholar 

  82. Nephew KP, Cardenas H, McClure KE, Ott TL, Bazer FW, Pope WF. Effects of administration of human chorionic gonadotropin or progesterone before maternal recognition of pregnancy on blastocyst development and pregnancy in sheep. J Anim Sci. 1994;72(2):453–8.

    CAS  PubMed  Google Scholar 

  83. Rizos D, Scully S, Kelly AK, Ealy AD, Moros R, Duffy P, Al Naib A, Forde N, Lonergan P. Effects of human chorionic gonadotrophin administration on day 5 after oestrus on corpus luteum characteristics, circulating progesterone and conceptus elongation in cattle. Reprod Fertil Dev. 2012;24(3):472–81.

    Article  CAS  PubMed  Google Scholar 

  84. Arosh JA, Banu SK, Kimmins S, Chapdelaine P, Maclaren LA, Fortier MA. Effect of interferon-tau on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology. 2004;145(11):5280–93.

    Article  CAS  PubMed  Google Scholar 

  85. Emond V, MacLaren LA, Kimmins S, Arosh JA, Fortier MA, Lambert RD. Expression of cyclooxygenase-2 and granulocyte-macrophage colony-stimulating factor in the endometrial epithelium of the cow is up-regulated during early pregnancy and in response to intrauterine infusions of interferon-tau. Biol Reprod. 2004;70(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  86. Brooks K, Burns G, Spencer TE. Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J Anim Sci Biotechnol. 2014;5(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peterson AJ, Tervit HR, Fairclough RJ, Havik PG, Smith JF. Jugular levels of 13,14-dihydro-15-keto-prostaglandin F and progesterone around luteolysis and early pregnancy in the ewe. Prostaglandins. 1976;12(4):551–8.

    Article  CAS  PubMed  Google Scholar 

  88. Zarco L, Stabenfeldt GH, Quirke JF, Kindahl H, Bradford GE. Release of prostaglandin F-2 alpha and the timing of events associated with luteolysis in ewes with oestrous cycles of different lengths. J Reprod Fertil. 1988;83(2):517–26.

    Article  CAS  PubMed  Google Scholar 

  89. Zarco L, Stabenfeldt GH, Basu S, Bradford GE, Kindahl H. Modification of prostaglandin F-2 alpha synthesis and release in the ewe during the initial establishment of pregnancy. J Reprod Fertil. 1988;83(2):527–36.

    Article  CAS  PubMed  Google Scholar 

  90. McCracken JA. Hormone receptor control of prostaglandin F2 alpha secretion by the ovine uterus. Adv Prostaglandin Thromboxane Res. 1980;8:1329–44.

    CAS  PubMed  Google Scholar 

  91. Silvia WJ, Niswender GD. Maintenance of the corpus luteum of early pregnancy in the ewe. IV. Changes in luteal sensitivity to prostaglandin F2 alpha throughout early pregnancy. J Anim Sci. 1986;63(4):1201–7.

    Article  CAS  PubMed  Google Scholar 

  92. Wiepz G, Wiltbank M, Nett T, Niswender GD, Sawyer H. Receptors for prostaglandins F2 alpha and E2 in ovine corpora lutea during maternal recognition of pregnancy. Biol Reprod. 1992;47(6):984–91.

    Article  CAS  PubMed  Google Scholar 

  93. Rueda BR, Botros IW, Pierce KL, Regan JW, Hoyer PB. Comparison of mRNA levels for the PGF(2alpha) receptor (FP) during luteolysis and early pregnancy in the ovine corpus luteum. Endocrine. 1995;3(11):781–7.

    Article  CAS  PubMed  Google Scholar 

  94. Thornburn G, Cox R, Currie W, Restall B, Schneider W. Prostaglandin F concentration in the utero-ovarian venous plasma of the ewe during the oestrous cycle. J Endocrinol. 1972;53:325–6.

    Article  Google Scholar 

  95. Costine BA, Inskeep EK, Blemings KP, Flores JA, Wilson ME. Mechanisms of reduced luteal sensitivity to prostaglandin F2alpha during maternal recognition of pregnancy in ewes. Domestic Anim Endocrinol. 2007;32(2):106–21.

    Article  CAS  Google Scholar 

  96. Weems YS, Nett TM, Rispoli LA, Davis TL, Johnson DL, Uchima T, Raney A, Lennon E, Pang J, Harbert T, Bowers G, Goto K, Ong A, Tsutahara N, Randel RD, Weems CW. Prostaglandin E1 (PGE1), but not prostaglandin E2 (PGE2), alters luteal and endometrial luteinizing hormone (LH) occupied and unoccupied LH receptors and mRNA for LH receptors in ovine luteal tissue to prevent luteolysis. Prostaglandins Other Lipid Mediat. 2010;91(1-2):42–50.

    Article  CAS  PubMed  Google Scholar 

  97. Lee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep. Biol Reprod. 2012;87(4):97.

    Article  PubMed  CAS  Google Scholar 

  98. Yankey SJ, Hicks BA, Carnahan KG, Assiri AM, Sinor SJ, Kodali K, Stellflug JN, Stellflug JN, Ott TL. Expression of the antiviral protein Mx in peripheral blood mononuclear cells of pregnant and bred, non-pregnant ewes. J Endocrinol. 2001;170(2):R7–11.

    Article  CAS  PubMed  Google Scholar 

  99. Han H, Austin KJ, Rempel LA, Hansen TR. Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J Endocrinol. 2006;191(2):505–12.

    Article  CAS  PubMed  Google Scholar 

  100. Gifford CA, Racicot K, Clark DS, Austin KJ, Hansen TR, Lucy MC, Davies CJ, Ott TL. Regulation of interferon-stimulated genes in peripheral blood leukocytes in pregnant and bred, nonpregnant dairy cows. J Dairy Sci. 2007;90(1):274–80.

    Article  CAS  PubMed  Google Scholar 

  101. Green JC, Okamura CS, Poock SE, Lucy MC. Measurement of interferon-tau (IFN-tau) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18-20d after insemination in dairy cattle. Anim Reprod Sci. 2010;121(1-2):24–33.

    Article  CAS  PubMed  Google Scholar 

  102. Monteiro Jr PL, Ribeiro ES, Maciel RP, Dias AL, Sole Jr E, Lima FS, Bisinotto RS, Thatcher WW, Sartori R, Santos JE. Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows. J Dairy Sci. 2014;97(8):4907–21.

    Article  CAS  PubMed  Google Scholar 

  103. Pugliesi G, Miagawa BT, Paiva YN, Franca MR, Silva LA, Binelli M. Conceptus-induced changes in the gene expression of blood immune cells and the ultrasound-accessed luteal function in beef cattle: how early can we detect pregnancy? Biol Reprod. 2014;91(4):95.

    Article  PubMed  CAS  Google Scholar 

  104. Meyerholz MM, Mense K, Knaack H, Sandra O, Schmicke M. Pregnancy-induced ISG-15 and MX-1 gene expression is detected in the liver of Holstein-Friesian heifers during late peri-implantation period. Reprod Domestic Anim. 2015;10(8):e0133377.

    Google Scholar 

  105. Hansen TR, Smirnova NP, Webb BT, Bielefeldt-Ohmann H, Sacco RE, Van Campen H. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus. Animal Health Research Reviews/Conference of Research Workers in Animal Diseases. 2015;16(1):15–26.

    Article  Google Scholar 

  106. Schalue-Francis TK, Farin PW, Cross JC, Keisler D, Roberts RM. Effect of injected bovine interferon-alpha I1 on estrous cycle length and pregnancy success in sheep. J Reprod Fertil. 1991;91(1):347–56.

    Article  CAS  PubMed  Google Scholar 

  107. Spencer TE, Stagg AG, Ott TL, Johnson GA, Ramsey WS, Bazer FW. Differential effects of intrauterine and subcutaneous administration of recombinant ovine interferon tau on the endometrium of cyclic ewes. Biol Reprod. 1999;61(2):464–70.

    Article  CAS  PubMed  Google Scholar 

  108. Li J, Roberts RM. Interferon-tau and interferon-alpha interact with the same receptors in bovine endometrium. Use of a readily iodinatable form of recombinant interferon-tau for binding studies. J Biol Chem. 1994;269(18):13544–50.

    CAS  PubMed  Google Scholar 

  109. Helmer SD, Hansen PJ, Thatcher WW, Johnson JW, Bazer FW. Intrauterine infusion of highly enriched bovine trophoblast protein-1 complex exerts an antiluteolytic effect to extend corpus luteum lifespan in cyclic cattle. J Reprod Fertil. 1989;87(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  110. Wiltbank MC, Wiepz GJ, Knickerbocker JJ, Belfiore CJ, Niswender GD. Proteins secreted from the early ovine conceptus block the action of prostaglandin F2 alpha on large luteal cells. Biol Reprod. 1992;46(3):475–82.

    Article  CAS  PubMed  Google Scholar 

  111. Mao D, Hou X, Talbott H, Cushman R, Cupp A, Davis JS. ATF3 expression in the corpus luteum: possible role in luteal regression. Mol Endocrinol. 2013;27(12):2066–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hansen TR, Pru JK. ISGylation: a conserved pathway in mammalian pregnancy. Adv Exp Med Biol. 2014;759:13–31.

    Article  CAS  PubMed  Google Scholar 

  113. Yang L, Wang XL, Wan PC, Zhang LY, Wu Y, Tang DW, Zeng SM. Up-regulation of expression of interferon-stimulated gene 15 in the bovine corpus luteum during early pregnancy. J Dairy Sci. 2010;93(3):1000–11.

    Article  CAS  PubMed  Google Scholar 

  114. Magata F, Shirasuna K, Struve K, Herzog K, Shimizu T, Bollwein H, Miyamoto A. Gene expressions in the persistent corpus luteum of postpartum dairy cows: distinct profiles from the corpora lutea of the estrous cycle and pregnancy. J Reprod Dev. 2012;58(4):445–52.

    Article  CAS  PubMed  Google Scholar 

  115. Robinson RS, Hammond AJ, Wathes DC, Hunter MG, Mann GE. Corpus luteum-endometrium-embryo interactions in the dairy cow: underlying mechanisms and clinical relevance. Reprod Domestic Anim. 2008;43(suppl 2):104–12.

    Google Scholar 

  116. Telgmann R, Bathgate RA, Jaeger S, Tillmann G, Ivell, R. Transcriptional regulation of the bovine oxytocin receptor gene. Biol Reprod. 2003;68:1015-26.

    Google Scholar 

  117. Satterfield MC, Dunlap KA, Hayashi K, Burghardt RC, Spencer TE, Bazer FW. Tight and adherens junctions in the ovine uterus: differential regulation by pregnancy and progesterone. Endocrinology. 2007;148(8):3922–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansen, T.R., Bott, R., Romero, J., Antoniazzi, A., Davis, J.S. (2017). Corpus Luteum and Early Pregnancy in Ruminants. In: Meidan, R. (eds) The Life Cycle of the Corpus Luteum. Springer, Cham. https://doi.org/10.1007/978-3-319-43238-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43238-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43236-6

  • Online ISBN: 978-3-319-43238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation