Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

In this chapter digital signal processing of a global navigation satellite system (GlossaryTerm

GNSS

) receiver is presented. It provides a high-level block diagram as well as detailed descriptions for all the internal functions of a modern digital GNSS receiver, focusing on signal acquisition and tracking, time synchronization, navigation data bit demodulation and decoding, and measurement generation. Also, several issues on the processing of upcoming GNSS signals, which may have new features like a binary offset carrier (GlossaryTerm

BOC

) modulation, data/pilot channels, primary/secondary codes, and so on are addressed. Furthermore, advanced topics in designing modern digital GNSS receivers such as tracking of the global positioning system (GlossaryTerm

GPS

) P(Y)-code, various combined processing schemes, Kalman filter-based signal tracking loops, and a vector-tracking approach are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADC:

analog-to-digital converter

AltBOC:

alternative BOC

ASIC:

application specific integrated circuit

AWGN:

additive white Gaussian noise

BOC:

binary offset carrier

BPSK:

binary phase-shift keying

CBOC:

composite binary offset carrier

CNAV:

civil navigation message

CPU:

central processing unit

CRC:

cyclic redundancy check

CSK:

code shift keying

DLL:

delay lock loop

FEC:

forward error correction

FE:

front end

FFT:

fast Fourier transform

FLL:

frequency lock loop

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

ICD:

interface control document

IF:

intermediate frequency

KF:

Kalman filter

LNA:

low-noise amplifier

LQG:

linear quadratic Gaussian

MLE:

maximum likelihood estimation

NCO:

numerically controlled oscillator

PLL:

phase lock loop

PRN:

pseudo-random noise

PSD:

power spectral density

PVT:

position, velocity and time

QPSK:

quadrature phase-shift keying

RF:

radio frequency

RMS:

root mean square

SAW:

surface acoustic wave

SBAS:

satellite-based augmentation system

SISO:

single-input-single-output

SNR:

signal-to-noise ratio

TCXO:

temperature compensated crystal oscillator

TTFF:

time-to-first-fix

References

  1. J.H. Won, D. Doetterboeck, B. Eissfeller: Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop, Navigation 57(3), 185–199 (2010)

    Article  Google Scholar 

  2. A.J. Van Dierendonck: GPS receivers. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington DC 1996) pp. 329–407

    Google Scholar 

  3. O. Julien, C. Macabiau, M.E. Cannon, G. Lachapelle: ASPeCT: Unambiguous sine-BOC\((n,n)\) acquisition/tracking technique for navigation applications, IEEE Trans. Aerosp. Electron. Syst. 43(1), 150–162 (2007)

    Article  Google Scholar 

  4. P. Fine, W. Wilson: Tracking algorithm for GPS offset carrier and signals, Proc. ION NTM 1999, San Diego (ION, Virginia 1999) pp. 671–676

    Google Scholar 

  5. B. Barker, B.C. Barker, J.W. Betz, J.E. Clark, J.T. Correia, J.T. Gillis, S. Lazar, K.A. Rehborn, J.R. Straton et al.: Overview of the GPS M Code Signal (MITRE, 2002) pp. 1–8, Technical Paper

    Google Scholar 

  6. R.L. Fante: Unambiguous tracker for GPS binary offset carrier signals, Proc. ION-AM-2003, Albuquerque (ION, Virginia 2003) pp. 141–145

    Google Scholar 

  7. T. Pany: Navigation Signal Processing for GNSS Software Receivers (Artech House, Norwood 2010)

    Google Scholar 

  8. S.M. Kay: Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall, Englewood Cliffs 1998)

    Google Scholar 

  9. T. Pany, E. Göhler, M. Irsigler, J. Winkel: On the state-of-the-art of real-time GNSS signal acquisition: A comparison of time and frequency domain methods, Proc. Int. Conf. Indoor Position. Indoor Navig. (IPIN), Zurich (2010) pp. 1–8

    Google Scholar 

  10. E.D. Kaplan, C.J. Hegarty: Understanding GPS – Principles and Applications, 2nd edn. (Artech House, Boston/London 2006)

    Google Scholar 

  11. C.-H. Chiou, C.-W. Huang, K.-A. Wen, M.-L. Wu: A programmable pipelined digital differential matched filter for DSSS receiver, IEEE J. Selected Areas Commun. 19(11), 2142–2150 (2001)

    Article  Google Scholar 

  12. C. Stoeber, F. Kneissl, B. Eissfeller, T. Pany: Analysis and verification of synthetic multicorrelators, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 2060–2069

    Google Scholar 

  13. D. Borio, L. Camoriano, L. Lo-Presti: Impact of acquisition searching strategy on the detection and false alarm probabilities in a CDMA receiver, Proc. IEEE PLANS, San Diego (2006) pp. 1100–1107

    Google Scholar 

  14. J. Tal: On the pull-in range of phase-locked loops, IEEE Trans. Commun. 23(3), 390–393 (1975)

    Article  Google Scholar 

  15. J.H. Won, P. Pany, B. Eissfeller: Iterative maximum likelihood estimators for GNSS signal tracking, Trans. IEEE Aerosp. Electron. Syst. 48(4), 2875–2893 (2012)

    Article  Google Scholar 

  16. A.J. Van Dierendonck, P. Fenton, T. Ford: Theory and performance of narrow correlator spacing in a GPS receiver, Navigation 39(3), 265–284 (1992)

    Article  Google Scholar 

  17. R. Jaffe, E. Rechtin: Design and performance of phase-lock circuits capable of near-optimum performance over a wide range of input signal and noise levels, IEEE Trans. Inf. Theory 1(1), 66–76 (1955)

    Article  Google Scholar 

  18. J.H. Won: Studies on the Software-Based GPS Receiver and Navigation Algorithms, Ph.D. Thesis (Ajou University, Suwon 2004)

    Google Scholar 

  19. J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2002)

    Article  Google Scholar 

  20. J.J. Spilker Jr.: GPS signal structure and theoretical performance. In: Global Positioning System: Theory and Applications, Vol. 1, (AIAA, Washington DC 1996) pp. 57–119

    Chapter  Google Scholar 

  21. M. Irsigler, B. Eissfeller: PLL tracking performance in the presence of oscillator phase noise, GPS Solution 5(4), 45–57 (2002)

    Article  Google Scholar 

  22. D. Allan: Statistics of atomic frequency standards, Proc. IEEE 54(2), 221–230 (1996)

    Article  Google Scholar 

  23. C. Hegarty, M.B. El-Arini, T. Kim, S. Ericson: Scintillation modeling for GPS-wide area augmentation system receivers, Radio Sci. 36(2), 1221–1231 (2011)

    Google Scholar 

  24. T.E. Humphreys, M.L. Psiaki, P.M. Kintner Jr, B.M. Ledvina: GPS carrier tracking loop performance in the presence of ionospheric scintillations, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 156–167

    Google Scholar 

  25. J.H. Won, B. Eissfeller, T. Pany, J. Winkel: Advanced signal processing dcheme for GNSS receivers under ionospheric scintillation, Proc. IEEE/ION PLANS 2012, Myrtle Beach (ION, Virginia 2012) pp. 44–49

    Google Scholar 

  26. N.I. Ziedan: GNSS Receivers for Weak Signals (Artech House, Norwood 2006)

    Google Scholar 

  27. T.-Y. Chiou, D. Gebre-Egziabher, T. Walter, P. Enge: Model analysis on the performance for an inertial aided FLL-assisted-PLL carrier-tracking loop in the presence of ionospheric scintillation, Proc. ION NTM 2007, San Diego (ION, Virginia 2007) pp. 1276–1295

    Google Scholar 

  28. Global Positioning Systems Directorate: Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013) IS-GPS-200H

    Google Scholar 

  29. Global Positioning Systems Directorate: Navstar GPS Space Segment/User Segment L5 Interfaces, Interface Specification (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013) IS-GPS-705D

    Google Scholar 

  30. European GNSS (Galileo) Open Service Signal. In: Space Interface Control Document, OS SIS ICD, Iss. 1.2, Nov. 2015 (European Union, 2015)

    Google Scholar 

  31. M. Irsigler, B. Eissfeller: Comparison of multipath mitigation techniques with consideration of future signal structures, Proc. ION GPS 2003, Portland (ION, Virginia 2003) pp. 2585–2592

    Google Scholar 

  32. J.W. Betz, K.R. Kolodziejski: Extended theory of early-late code tracking for a bandlimited GPS receiver, Navigation 47(3), 211–226 (2000)

    Article  Google Scholar 

  33. A. Wieser: GPS Based Velocity Estimation and Its Application to an Odometer (Shaker, Aachen 2007)

    Google Scholar 

  34. T. Pany, J.H. Won, G. Hein: GNSS software defined radio: Real receiver or just tool for experts?, Inside GNSS Mag. 1(5), 66–76 (2006)

    Google Scholar 

  35. B. Hoffmann-Wellenhof, H. Lichtenegger, E. Wasle: GNSS – Global Navigation Satellite Systems (Springer, Wien 2008)

    Google Scholar 

  36. J. Ashjaee: An analysis of Y-code tracking techniques and associated technologies, Geod. Info Mag. 7(7), 26–30 (1993)

    Google Scholar 

  37. J. Ashjaee, R. Lorenz: Precision GPS surveying after Y-code, Proc. ION-GPS-92, Albuquerque (ION, Virginia 1992) pp. 657–659

    Google Scholar 

  38. K.T. Woo: Optimum semi-codeless carrier phase tracking of L2, Navigation 47(2), 82–99 (2000)

    Article  Google Scholar 

  39. Global Positioning Systems Directorate: Navstar GPS Space Segment/User Segment L1C Interfaces, Interface Specification (Global Positioning Systems Directorate, Los Angeles 2013) IS-GPS-800D

    Google Scholar 

  40. J.H. Won, B. Eissfeller, A. Schmitz-Peiffer, J.-J. Floch, F. Zanier, E. Colzi: Trade-off between data rate and signal power split in GNSS signal design, Trans. IEEE Aerosp. Electron. Syst. 48(3), 2260–2281 (2012)

    Article  Google Scholar 

  41. T. Morrissey: Forward Error Correction for GPS L5 Data (RTCA SC159 WG1, London 1999) pp. 20–21

    Google Scholar 

  42. C. Hegarty, A.J. Van Dierendonck: Civil GPS/WAAS signal design and interference environment at 1176.45 MHz: Results of RTCA SC159 WG1 activities, Proc. ION GPS 1999, Nashville (ION, Virginia 1999) pp. 1727–1736

    Google Scholar 

  43. M. Tran, C. Hegarty, A.J. Van Dierendonck, T. Morrissey: SBAS L1/L5 signal design options, Proc. ION GPS AM 2003, Albuquerque (ION, Virginia 2003) pp. 507–517

    Google Scholar 

  44. M. Tran: Performance evaluations of the new GPS L5 and L2 Civil (L2C) signals, Navigation 51(3), 199–212 (2004)

    Article  Google Scholar 

  45. C. Hegarty: Evaluation of the proposed signal structure for the new civil GPS signal at 1176.45 MHz (MITRE Corporation, 1999), WN 99W0000034

    Google Scholar 

  46. O. Julien: Carrier-phase tracking of future data/pilot signals, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 113–124

    Google Scholar 

  47. G.I. Jee: GNSS receiver tracking loop optimization for combined phase, frequency and delay locked loops, Proc. ENC-GNSS, Munich (2005)

    Google Scholar 

  48. J.H. Won, P. Pany, B. Eissfeller: Non-iterative filter-based maximum likelihood estimators for GNSS signal tracking, Trans. IEEE Aerosp. Electron. Syst. 48(2), 1100–1114 (2012)

    Article  Google Scholar 

  49. P.F. Driessen: DPLL bit synchronizer with rapid acquisition using adaptive Kalman filtering techniques, IEEE Trans. Commun. 42(9), 2673–2675 (1994)

    Article  Google Scholar 

  50. G.S. Christiansen: Modeling of a PRML timing loop as a Kalman filter, Proc. IEEE GLOBECOM, San Francisco, Vol. 2 (1994) pp. 1157–1161

    Google Scholar 

  51. A. Patapoutian: On phase-locked loops and Kalman filters, IEEE Trans. Commun. 47(5), 670–672 (1999)

    Article  Google Scholar 

  52. M.L. Psiaki, H. Jung: Extended Kalman filter methods for tracking weak GPS signals, Proc. ION GPS 2002, Portland (ION, Virginia 2002) pp. 2539–2553

    Google Scholar 

  53. D. Gustafson, J. Dowdle, K. Flueckiger: A deeply integrated adaptive GPS-based navigator with extended range code tracking, Proc. IEEE PLANS, San Diego (2000) pp. 118–124

    Google Scholar 

  54. D. Gustafson, D.E. Gustafson, J.R. Dowdle, J.M. Elwell jr: Deeply-Integrated Adaptive INS/GPS Navigator with Extended-Range Code Tracking, US Patent (Application) Ser., Vol. 6630904 B2 (2003)

    Google Scholar 

  55. J.H. Won, P. Pany, B. Eissfeller: Characteristics of Kalman filter approach for signal tracking loop of GNSS receiver, Trans. IEEE Aerosp. Electron. Syst. 48(4), 3671–3681 (2012)

    Article  Google Scholar 

  56. R.G. Brown, P.Y.C. Hwang: Introduction to Random Signals and Applied Kalman Filtering with MATLAB Exercises and Solutions, 3rd edn. (John Willy, New York 1997)

    Google Scholar 

  57. J.H. Won, B. Eissffeller: A tuning method based on signal-to-noise power ratio for adaptive PLL and its relationship with equivalent noise bandwidth, IEEE Commun. Lett. 17(2), 393–396 (2013)

    Article  Google Scholar 

  58. J.H. Won: A novel adaptive digital phase-lock-loop for modern digital GNSS receivers, IEEE Commun. Lett. 18(1), 46–49 (2014)

    Article  Google Scholar 

  59. E.M. Copps, G.J. Geier, W.C. Fidler, P.A. Grundy: Optimal processing of GPS signals, Navigation 27(3), 171–182 (1980)

    Article  Google Scholar 

  60. J.W. Sennott: A flexible GPS software development system and timing analyzer for present and future micorprocessor, Navigation 31(2), 84–95 (1984)

    Article  Google Scholar 

  61. J.W. Sennott, D. Senffner: Navigation Receiver with Coupled Signal-Tracking Channels, US Patent Application Ser., Vol. 5343209 (1992) Bloomington, IL

    Google Scholar 

  62. J.W. Sennot, D. Senffner: The use of satellite geometry for prevention of cycle slips in a GPS processor, Navigation 39(2), 217–236 (1992)

    Article  Google Scholar 

  63. J.W. Sennot, D. Senffner: Comparison of continuity and integrity characteristics for integrated and decoupled demodulation/navigation receiver, Proc. ION GPS 1995, Palm Springs (ION, Virginia 1995) pp. 1531–1537

    Google Scholar 

  64. J.J. Spilker Jr: Vector Delay Lock Loop Processing of Radiolocation Transmitter Signals, US Patent (Application) Ser., Vol. 5398034 (1995) Stanford Telecommunications Inc.

    Google Scholar 

  65. J.J. Spilker Jr: Fundamentals of signal tracking theory. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker Jr. (AIAA, Washington DC 1996) pp. 245–327

    Chapter  Google Scholar 

  66. T. Pany, B. Eissfeller: Use of a vector delay lock loop receiver for GNSS signal power analysis in bad signal conditions, Proc. IEEE PLANS, San Diego (2006) pp. 893–903

    Google Scholar 

  67. D. Benson: Interference benefits of a vector delay lock loop (VDLL) GPS receiver, Proc. ION AM 2007, Cambridge (ION, Virginia 2007) pp. 749–756

    Google Scholar 

  68. M. Lashley, D.M. Bevly: What are vector tracking loops, and what are their benefits and drawbacks?, Inside GNSS Mag. 4(3), 16–21 (2009)

    Google Scholar 

  69. J.M. Horslund, J.R. Hooker: Increase Jamming Immunity by Optimizing Processing Gain for GPS/INS Systems, US Patent Application 5983160 (1999) Raytheon Company

    Google Scholar 

  70. J.H. Won, B. Eissfeller: Implementation, test and validation of a vector-tracking-loop with the ipex software receiver, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 795–802

    Google Scholar 

  71. P.Y. Kim, F.L. Orlando: GPS Navigation with Integrated Phase Tracking Filter, US Patent Application 7151486 B2 (2006) Lockheed Martin Corporation

    Google Scholar 

  72. A.S. Abbott, W.E. Lillo: Global Positioning Systems and Inertial Measuring Unit Ultratight Coupling Method, US Patent Application 6516021 B1 (2003) The Aerospace Corporation

    Google Scholar 

  73. A. Jovancevic, A. Brown, S. Ganguly, J. Noronha, B. Sirpatil: Ultra tight coupling implementation using real time software receiver, Proc. ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 1575–1586

    Google Scholar 

  74. E.J. Ohlmeyer: Analysis of an ultra-tightly coupled GPS/INS system in jamming, Proc. IEEE/ION PLANS 2006, San Diego (ION, Virginia 2006) pp. 44–53

    Google Scholar 

  75. T. Pany, N. Falk, B. Riedl, C. Stoeber, T. Hartmann, G. Stangl: Receiver technology, software receivers, an answer for precise positioning research, GPS World 23(9), 60–66 (2012)

    Google Scholar 

  76. J.H. Won, B. Eissfeller: Effectiveness analysis of vector-tracking-loop in signal fading environment, Proc. NAVITEC, Noordwijk (2010) pp. 1–6

    Google Scholar 

  77. M.G. Petovello, G. Lachapelle: Comparison of vector-based software receiver implementations with application to ultra-tight GPS/INS integration, Proc. GNSS 2006, Fort Worth (ION 2006) (2006) pp. 1790–1799

    Google Scholar 

  78. S.J. Ko, B. Eissfeller, J.H. Won: Assessment of vector-tracking-loop performance under radio frequency interference environments, Proc. ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 2333–2341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hoon Won .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Won, JH., Pany, T. (2017). Signal Processing. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_14

Download citation

Publish with us

Policies and ethics

Navigation