Fundamentals of Information Theory

  • Chapter
  • First Online:
Quantum Zero-Error Information Theory

Abstract

This chapter introduces some elementary concepts regarding information theory. First, we present entropy and other measures of information. Then, we discuss a very important quantity in classical information theory, the capacity of a discrete noisy channel. In the second part of this chapter, we give a brief introduction to the quantum information theory. We start with the von Neumann entropy and other measures of information. Then, we introduce the mathematical formulation of quantum channels, including the Choi-Jamiołkowski isomorphism. Accessible information, Holevo quantity and quantum channel capacities are discussed; the classical capacity of quantum channels is presented, as well as a brief introduction to the other kinds of quantum channel capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 116.04
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the sake of simplicity, we consider \(\mathcal{H}_{1} = \mathcal{H}_{2} = \mathcal{H}\).

  2. 2.

    The Schmidt decomposition of a bipartite quantum state \(\vert \psi \rangle _{AB} \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}\) is given by | ψ AB  =  i λ i  | i A  | i B , where λ i  ≥ 0, i λ i 2 = 1, and | i A , | i B are orthonormal basis for \(\mathcal{H}_{A}\), \(\mathcal{H}_{B}\), respectively. The cardinality of {λ i }, including multiplicity, is known as Schmidt rank or Schmidt number of | ψ AB .

References

  1. Arimoto S (1972) An algorithm for calculating the capacity of an arbitrary discrete memoryless channel. IEEE Trans Inf Theory 18:14–20

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnum H, Nielsen MA, Schumacher B (1997) Information transmission through a noisy quantum channel. http://arxiv.org/abs/quant-ph/9702049. Accessed 25 Mar 2016

  3. Bengtsson I, Zyczkowski K (2006) Geometry of quantum states. Cambridge University press, Cambridge

    Book  MATH  Google Scholar 

  4. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed state entanglement and quantum error correction. Phys Rev A 54:3824

    Article  MathSciNet  Google Scholar 

  5. Bennett CH, Shor PW, Smolin JA, Thapliyal AV (2002) Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans Inf Theory 48:2637–2655

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlekamp E (1974) Key papers in the development of coding theory. IEEE Press, New York

    MATH  Google Scholar 

  7. Blahut R (1972) Computation of channel capacity and rate distortion functions. IEEE Trans Inf Theory 18:460–473

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruen AA, Forcinito MA (2005) Cryptography, information theory, and error-correction. Wiley-Interscience, New York

    MATH  Google Scholar 

  9. Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York

    MATH  Google Scholar 

  10. Csiszár I, Körner J (2011) Information theory? Coding theorems for discrete memoryless systems, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Cubitt T, Harrow AW, Leung D, Montanaro A, Winter A (2008) Counterexamples to additivity of minimum output p-rényi entropy for p close to 0. Commun Math Phys 284(1):281–290. doi:10.1007/s00220-008-0625-z, http://dx.doi.org/10.1007/sn-0625-z

    Google Scholar 

  12. Desurvire E (2009) Classical and quantum information theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Devetak I (2005) The private classical capacity and quantum capacity of a quantum channel. IEEE Trans Inf Theory 51(1):44–55

    Article  MathSciNet  MATH  Google Scholar 

  14. Gray RM (2011) Entropy and information theory, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  15. Holevo AS (1973) Information theoretical aspects of quantum measurements. Probl Inf Transm 9(2):110–118

    MathSciNet  Google Scholar 

  16. Holevo AS (1998) The capacity of the quantum channel with general signal states. IEEE Trans Inf Theory 4(1):269–273

    Article  MathSciNet  MATH  Google Scholar 

  17. Imre S, Gyongyosi L (2012) Advanced quantum communications: an engineering approach, 1st edn. Wiley, New York

    Book  MATH  Google Scholar 

  18. Jones GA, Jones JM (2000) Information and coding theory, 1st edn. Springer, London

    Book  MATH  Google Scholar 

  19. Lloyd S (1997) Capacity of the noisy quantum channel. Phys Rev A 55:1613–1622

    Article  MathSciNet  Google Scholar 

  20. Marinescu DC, Marinescu GM (2011) Classical and quantum information, 1st edn. Academic, New York

    MATH  Google Scholar 

  21. McMahon D (2008) Quantum computing explained, 1st edn. Wiley, New York

    MATH  Google Scholar 

  22. Medeiros RAC (2008) Zero-error capacity of quantum channels. Ph.D Thesis, Universidade Federal de Campina Grande – TELECOM Paris Tech

    Google Scholar 

  23. Moser SM, Chen PN (2012) A student’s guide to coding and information theory, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  25. Schumacher B (1996) Sending quantum entanglement through noisy channels. http://arxiv.org/abs/quant-ph/9604023v1. Accessed 25 Mar 2016

  26. Schumacher B, Nielsen MA (1996) Quantum data processing and error correction. http://arxiv.org/abs/quant-ph/9604022v1. Accessed 25 Mar 2016

    Google Scholar 

  27. Schumacher B, Westmoreland MD (1997) Sending classical information via noisy quantum channels. Phys Rev A 56. doi:10.1103/PhysRevA.56.131

    Google Scholar 

  28. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:623–656

    Article  MathSciNet  MATH  Google Scholar 

  29. Shor PW (2002) The quantum channel capacity and coherent information. In: MSRI Workshop on Quantum Computation, Berkeley, CA, pp 1–17. Available at: http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/shor/1/

    Google Scholar 

  30. Shor P (2003) Capacities of quantum channels and how to find them. http://arxiv.org/abs/quant-ph/0304102. Accessed 07 Mar 2016

    Google Scholar 

  31. Shor PW (2004) The adaptive classical capacity of a quantum channel, or information capacities of three symmetric pure states in three dimensions. IBM J Res & Dev 48(1):115–137

    Article  Google Scholar 

  32. Slepian D (1973) Key papers in the development of information theory. IEEE, New York

    MATH  Google Scholar 

  33. Smith G (2010) Quantum channel capacities. http://arxiv.org/abs/1007.2855. Accessed 19 Mar 2016

  34. Timpson CG (2013) Quantum information theory and the foundations of quantum mechanics, 1st edn. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  35. Togneri R, deSilva CJS (2006) Fundamentals of information theory and coding design, 1st edn. Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  36. Vedral V (2006) Introduction to quantum information science. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  37. Verdu S, McLaughlin S (2000) Information theory: 50 years of discovery. IEEE, New York

    MATH  Google Scholar 

  38. von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  39. Wilde MM (2013) Quantum information theory. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  40. Williams CP (2011) Explorations in quantum computing, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  41. Yanofsky NS, Mannucci MA (2008) Quantum computing for computer scientists. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guedes, E.B., de Assis, F.M., Medeiros, R.A.C. (2016). Fundamentals of Information Theory. In: Quantum Zero-Error Information Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-42794-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42794-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42793-5

  • Online ISBN: 978-3-319-42794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation