Basic Principles of In Vivo Distribution, Toxicity, and Degradation of Prospective Inorganic Nanoparticles for Imaging

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Iron oxide, gold, and silver nanoparticles, together with quantum dots, represent the salient inorganic nanoparticles that have been considered as prospective imaging agents. Characterized by specific chemical composition and material-specific in vivo fate, they represent distinct features, going from highly biocompatible and biodegradable to apprehensively toxic, biostatic, or particularly inert, respectively. While questions on inorganic nanoparticle behavior still remain, their in vivo fate starts to refine and their interactions with biomolecules, cells, and organs appear to converge to a certain extent. In order to be injected to living organisms, these particles have to be stabilized by a coating, which subsequently interacts with biomolecules, including proteins, influences particles’ behavior, and eventually strips off. Then, within cellular compartments, mainly in liver and spleen, particles aggregate. This generally impacts particles’ imaging functionality, which further deteriorates when biomolecules interact and the process of particles’ degradation commences. While the rates of particles’ decay intrinsically differ and their biological pathways diverge, the mechanisms of their potential toxicity remain similar and are mainly due to the generation of reactive oxygen species. Nevertheless, at some point, the organism seems to manage these nanoparticles and gradually eliminates them from the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  CAS  PubMed  Google Scholar 

  2. Gao X, Dave SR. Quantum dots for cancer molecular imaging. Bio-applications of nanoparticles. New York: Springer; 2007. p. 57–73.

    Google Scholar 

  3. Tai S-P, Wu Y, Shieh D-B, Chen L-J, Lin K-J, Yu C-H, et al. Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mat. 2007;19:4520–3.

    Article  CAS  Google Scholar 

  4. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  PubMed  Google Scholar 

  5. Huang H-C, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155(3):344–57.

    Article  CAS  PubMed  Google Scholar 

  6. Andreou C, Kishore SA, Kircher MF. Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. J Nucl Med. 2015;56:1295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mat. 2009;21:2133–48.

    Article  CAS  Google Scholar 

  8. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17:484–99.

    Article  CAS  PubMed  Google Scholar 

  9. Gao X, Nie S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 2003;21:371–3.

    Article  CAS  PubMed  Google Scholar 

  10. Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  11. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95:300–12.

    Article  CAS  PubMed  Google Scholar 

  12. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.

    Article  CAS  PubMed  Google Scholar 

  13. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576–607.

    Article  CAS  PubMed  Google Scholar 

  14. Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano. 2014;8:5515–26.

    Article  CAS  PubMed  Google Scholar 

  15. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishihara T, Takeda M, Sakamoto H, Kimoto A, Kobayashi C, Takasaki N, et al. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm Res. 2009;26:2270–9.

    Article  CAS  PubMed  Google Scholar 

  17. Lila ASA, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  18. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123:3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beduneau A, Ma Z, Grotepas CB, Kabanov A, Rabinow BE, Gong N, et al. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS One. 2009;4:e4343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105:14265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137–43.

    Article  CAS  PubMed  Google Scholar 

  22. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Büchel C, et al. Human serum albumin nanoparticles modified with apolipoprotein AI cross the blood-brain barrier and enter the rodent brain. J Drug Target. 2010;18:842–8.

    Article  CAS  PubMed  Google Scholar 

  23. Weissleder RA, Stark D, Engelstad B, Bacon B, Compton C, White D, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol. 1989;152:167–73.

    Article  CAS  Google Scholar 

  24. Pouliquen D, Le Jeune J, Perdrisot R, Ermias A, Jallet P. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging. 1991;9(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  25. Freund B, Tromsdorf UI, Bruns OT, Heine M, Giemsa A, Bartelt A, et al. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano. 2012;6:7318–25.

    Article  CAS  PubMed  Google Scholar 

  26. Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, et al. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol. 2015;6:36–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Thomas R, Park I-K, Jeong Y. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Inter J Mol Sci. 2013;14:15910.

    Article  CAS  Google Scholar 

  28. Wang H, Kumar R, Nagesha D, Duclos RI, Sridhar S, Gatley SJ. Integrity of 111 In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl Med Biol. 2015;42:65–70.

    Article  PubMed  CAS  Google Scholar 

  29. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, et al. In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol. 2015;10:619–23.

    Article  CAS  PubMed  Google Scholar 

  30. Sée V, Free P, Cesbron Y, Nativo P, Shaheen U, Rigden DJ, et al. Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano. 2009;3:2461–8.

    Article  PubMed  CAS  Google Scholar 

  31. Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41:2780–99.

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine. 2013;9:1159–68.

    CAS  PubMed  Google Scholar 

  33. Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115:2109–35.

    Article  CAS  PubMed  Google Scholar 

  34. Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging. 2012;7:373–83.

    Article  PubMed  CAS  Google Scholar 

  35. Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, Javed Y, Guardia P, Riedinger A, et al. Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano. 2013;7:3939–52.

    Article  CAS  PubMed  Google Scholar 

  36. Silva A, Wilhelm C, Kolosnjaj-Tabi J, Luciani N, Gazeau F. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging. Pharm Res. 2012;29:1392–403.

    Article  CAS  PubMed  Google Scholar 

  37. Faraj AA, Luciani N, Kolosnjaj‐Tabi J, Mattar E, Clement O, Wilhelm C, et al. Real‐time high‐resolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe. Contrast Media Mol Imaging. 2013;8:193–203.

    Article  PubMed  CAS  Google Scholar 

  38. Kolosnjaj-Tabi J, Javed Y, Lartigue L, Volatron J, Elgrabli D, Marangon I, et al. The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano. 2015;9:7925–39.

    Article  CAS  PubMed  Google Scholar 

  39. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006:165–72.

    Google Scholar 

  40. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.

    Article  CAS  Google Scholar 

  41. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991;91:S14–22.

    Article  Google Scholar 

  42. Nel A, **a T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bachler G, von Goetz N, Hungerbühler K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomed. 2013;8:3365.

    Google Scholar 

  44. Lison D, Vietti G, van den Brule S. Paracelsus in nanotoxicology. Particle Fibre Toxicol. 2014;11:35.

    Article  CAS  Google Scholar 

  45. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32:3988–99.

    Article  CAS  PubMed  Google Scholar 

  46. Goodman AM, Cao Y, Urban C, Neumann O, Ayala-Orozco C, Knight MW, et al. The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano. 2014;8:3222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolosnjaj-Tabi J, Wilhelm C, Clément O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnol. 2013;11:S7.

    Article  Google Scholar 

  48. Béalle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clément O, Gazeau F, et al. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir. 2012;28:11834–42.

    Article  PubMed  CAS  Google Scholar 

  49. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AK, et al. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano. 2014;8:4268–83.

    Article  CAS  PubMed  Google Scholar 

  50. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science. 2015;347:1477–80.

    Article  CAS  PubMed  Google Scholar 

  51. Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri J-C, et al. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano. 2012;6:2665–78.

    Article  CAS  PubMed  Google Scholar 

  52. Levy M, Wilhelm C, Luciani N, Devaux V, Gendron F, Luciani A, et al. Nanomagnetism reveals the intracellular clustering of nanoparticles in the organism. Nanoscale. 2011;3:4402–10.

    Article  CAS  PubMed  Google Scholar 

  53. Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol. 2004;5:567–84.

    Article  CAS  PubMed  Google Scholar 

  54. Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, et al. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. Contrast Media Mol Imaging. 2013;8:439–55.

    Article  CAS  PubMed  Google Scholar 

  55. Levy M, Gazeau F, Bacri JC, Wilhelm C, Devaud M. Modeling magnetic nanoparticle dipole-dipole interactions inside living cells. Phys Rev B. 2011;84:075480.

    Article  CAS  Google Scholar 

  56. Beaumont C, Delaby C. Recycling iron in normal and pathological states. Semin Hematol. 2009;46:328–38.

    Article  CAS  PubMed  Google Scholar 

  57. Wagner S, SCHNORR J, Pilgrimm H, Hamm B, Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Investig Radiol. 2002;37:167–77.

    Article  CAS  Google Scholar 

  58. Lewis RJ, Irving N. Sax’s dangerous properties of industrial materials. Van Nostrand Reinhold. 2003 Sax’s Dangerous Properties of Industrial Materials, 5 Volume Set, 12th Edition.

    Google Scholar 

  59. Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, et al. Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology. 2015;9:95–105.

    Article  CAS  PubMed  Google Scholar 

  60. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2008;5:316–27.

    Article  CAS  PubMed  Google Scholar 

  61. Neibert KD, Maysinger D. Mechanisms of cellular adaptation to quantum dots—the role of glutathione and transcription factor EB. Nanotoxicology. 2012;6(3):249–62.

    Article  CAS  PubMed  Google Scholar 

  62. Fischer HC, Liu L, Pang KS, Chan WCW. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mat. 2006;16:1299–305.

    Article  CAS  Google Scholar 

  63. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconj Chem. 2004;15(1):79–86.

    Article  CAS  Google Scholar 

  64. Fitzpatrick JAJ, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 2009;9(7):2736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu N, Mu Y, Chen Y, Sun H, Han S, Wang M, et al. Degradation of aqueous synthesized CdTe/ZnS quantum dots in mice: differential blood kinetics and biodistribution of cadmium and tellurium. Particle Fibre Toxicol. 2013;10:37.

    Article  CAS  Google Scholar 

  66. Sykes EA, Dai Q, Tsoi KM, Hwang DM, Chan WC. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat Comm. 2014;5.

    Google Scholar 

  67. Bernhoft RA. Cadmium toxicity and treatment. Sci World J. 2013. doi:10.1155/2013/394652.

    Google Scholar 

  68. Soenen SJ, Manshian BB, Aubert T, Himmelreich U, Demeester J, De Smedt SC, et al. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Chem Res Toxicol. 2014;27:1050–9.

    Article  CAS  PubMed  Google Scholar 

  69. Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Ho CC, et al. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol. 2013;26:662–73.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu Z-J, Yeh Y-C, Tang R, Yan B, Tamayo J, Vachet RW, et al. Stability of quantum dots in live cells. Nat Chem. 2011;3:963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir. 2007;23:1974–80.

    Article  CAS  PubMed  Google Scholar 

  72. Soenen SJ, Demeester J, De Smedt SC, Braeckmans K. The cytotoxic effects of polymer-coated quantum dots and restrictions for live cell applications. Biomaterials. 2012;33:4882–8.

    Article  CAS  PubMed  Google Scholar 

  73. Chen Y, Chen G, Feng S, Pan J, Zheng X, Su Y, et al. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt. 2012;17:0670031–7.

    Google Scholar 

  74. Homan KA, Souza M, Truby R, Luke GP, Green C, Vreeland E, et al. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano. 2012;6(1):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. J Phys Chem C. 2010;114:16122–8.

    Article  CAS  Google Scholar 

  76. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett. 2004;4:1029–34.

    Article  CAS  Google Scholar 

  77. Mock J, Barbic M, Smith D, Schultz D, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116:6755–9.

    Article  CAS  Google Scholar 

  78. **u Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  CAS  PubMed  Google Scholar 

  79. Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res. 2011;13:233–44.

    Article  CAS  Google Scholar 

  80. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol. 2007;26:135–41.

    Article  CAS  PubMed  Google Scholar 

  81. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012;213:249–59.

    Article  CAS  PubMed  Google Scholar 

  82. Chen X, Schluesener H. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.

    Article  CAS  PubMed  Google Scholar 

  83. Liu J, Pennell KG, Hurt RH. Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol. 2011;45:7345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4:6903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tejamaya M, Römer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46(13):7011–7.

    Article  CAS  PubMed  Google Scholar 

  86. Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009;43(15):6046–51.

    Article  CAS  PubMed  Google Scholar 

  87. Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao Y-P, et al. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small. 2014;10:385–98.

    Article  CAS  PubMed  Google Scholar 

  88. Thakor A, Jokerst J, Zavaleta C, Massoud T, Gambhir S. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett. 2011;11:4029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Wall SL, Painter C, Stone JD, Bandaranayake R, Wiley DC, Mitchison TJ, et al. Noble metals strip peptides from class II MHC proteins. Nat Chem Biol. 2006;2:197–201.

    Article  PubMed  CAS  Google Scholar 

  90. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9.

    Article  PubMed  CAS  Google Scholar 

  91. Paulsson M, Krag C, Frederiksen T, Brandbyge M. Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study. Nano Lett. 2008;9:117–21.

    Article  CAS  Google Scholar 

  92. Krüger D, Rousseau R, Fuchs H, Marx D. Towards “mechanochemistry”: mechanically induced isomerizations of thiolate–gold clusters. Angew Chem Int Ed. 2003;42:2251–3.

    Article  CAS  Google Scholar 

  93. Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31:6574–81.

    Article  CAS  PubMed  Google Scholar 

  94. Cho W-S, Cho M, Jeong J, Choi M, Han BS, Shin H-S, et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol App Pharmacol. 2010;245:116–23.

    Article  CAS  Google Scholar 

  95. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4:2108–11.

    Article  CAS  PubMed  Google Scholar 

  96. Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, et al. Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano. 2013;8:222–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77:407–16.

    Article  CAS  PubMed  Google Scholar 

  98. Hainfeld J, Slatkin D, Focella T, Smilowitz H. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53.

    Article  CAS  PubMed  Google Scholar 

  99. Stern S, Adiseshaiah P, Crist R. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle Fibre Toxicol. 2012;9:20.

    Article  CAS  Google Scholar 

  100. Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano. 2014;8:10328–42.

    Article  CAS  PubMed  Google Scholar 

  101. Ma X, Wu Y, ** S, Tian Y, Zhang X, Zhao Y, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5:8629–39.

    Article  CAS  PubMed  Google Scholar 

  102. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31:7606–19.

    Article  CAS  PubMed  Google Scholar 

  103. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size‐dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.

    Article  CAS  PubMed  Google Scholar 

  104. Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4:858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Gazeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolosnjaj-Tabi, J., Volatron, J., Gazeau, F. (2017). Basic Principles of In Vivo Distribution, Toxicity, and Degradation of Prospective Inorganic Nanoparticles for Imaging. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_2

Download citation

Publish with us

Policies and ethics

Navigation