Collisional Energy Exchange in CO\(_2\)–N\(_2\) Gaseous Mixtures

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

Abstract

The calculation of series of vibrational state-specific collision cross sections and rate coefficients over extended energy and temperature ranges is required to set up accurate kinetic models of gaseous mixtures under nonequilibium conditions, such as those encountered in hypersonic flows. Processes involving carbon oxides (particularly CO\(_2\)) and N\(_2\) have to be included of models designed to simulate and interpret important aspects of the Earth and planetary atmospheres, also in connection to spacecraft’s entry problems, where hypersonics flows are involved. Here we summarize a theoretical approach to the calculation of energy transfer cross section and rates for CO\(_2\)–N\(_2\) mixtures, based on classical trajectory simulations of the collision dynamics and on a bond-bond semi-empirical description of the intermolecular interaction, which includes the dependence of the intermolecular interaction on the monomer deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Capitelli, M., Bruno, D., Colonna, G., D’Ammando, G., Esposito, F., Laricchiuta, A., Pietanza, L.D.: Rendiconti Lincei 22, 201–210 (2011)

    Article  Google Scholar 

  2. Panesi, M., Jaffe, R.L., Schwenke, D.W., Magin, T.E.: J. Chem. Phys. 138, 044312 (2013)

    Article  Google Scholar 

  3. Laganà, A., Lombardi, A., Pirani, F., Belmonte, P.G., Ortega, R.S., Armenise, I., Cacciatore, M., Esposito, F., Rutigliano, M.: Open Plasma Phys. J. 7, 48–59 (2014)

    Article  Google Scholar 

  4. Celiberto, R., et al.: Plasma Sources Sci. Tech. (2016)

    Google Scholar 

  5. Hirschfelder, J.O.: Advances in Chemical Physics: Intermolecular Forces, p. 12. Wiley, New York (1967)

    Book  Google Scholar 

  6. Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces. Clarendon Press, Oxford (1987)

    Google Scholar 

  7. Kustova, E.V., Nagnibeda, E.A.: Chem. Phys. Lett. 398, 111–117 (2012)

    Google Scholar 

  8. Kustova, E.V., Kremer, G.M.: Chem. Phys. 445, 82–94 (2014)

    Article  Google Scholar 

  9. Faginas-Lago, N., Lombardi, A., Pacifici, L., Costantini, A.: Comput. Theor. Chem. 2013, 103–107 (1022)

    Google Scholar 

  10. Lombardi, A., Ragni, M., De Fernandes, I.F.: Proceedings - 12th International Conference on Computational Science and Its Applications (ICCSA 2012), art. no. 6257613, pp. 77–82 (2012)

    Google Scholar 

  11. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Int. J. Quantum Chem. 111, 318–332 (2011)

    Article  Google Scholar 

  12. Palacio, J.C.C., Abad, L.V., Lombardi, A., Aquilanti, V., Soneira, J.R.: Chem. Phys. 126, 174701 (2008)

    Google Scholar 

  13. Aquilanti, V., Lombardi, A., Littlejohn, R.G.: Theor. Chem. Acc. 111, 406 (2004)

    Article  Google Scholar 

  14. Aquilanti, V., Novillo, E.C., Garcia, E., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Comput. Mater. Sci. 35, 187–191 (2006)

    Article  Google Scholar 

  15. Gargano, R., Barreto, P.R.P., Faginas Lago, N., Laganaà, A.: J. Chem. Phys. 125, 114311–114316 (2006)

    Article  Google Scholar 

  16. Laganà, A., Lago, N.F., Rampino, S., Huarte-Larrañaga, F., Garcia, E.: Phys. Scripta 78, 058113 (2008)

    Article  Google Scholar 

  17. Faginas-Lago, N., Huarte-Larrañaga, F., Laganà, A.: Chem. Phys. Lett. 464, 249–255 (2008)

    Article  Google Scholar 

  18. Rampino, S., Lago, N.F., Naga, F.H.-L., Lagan’a, A.: J. Comp. Chem. 33, 708–714 (2012)

    Article  Google Scholar 

  19. Khalil, M.A., Rasmussen, R.A.: Nature 332, 242 (1988)

    Article  Google Scholar 

  20. Palazzetti, F., Maciel, G.S., Lombardi, A., Grossi, G., Aquilanti, V.J.: Chin. Chem. Soc-Taip. 59, 1045–52 (2012)

    Article  Google Scholar 

  21. Pirani, F., Cappelletti, D., Liuti, G.: Chem. Phys. Lett. 350, 286 (2001)

    Article  Google Scholar 

  22. Pirani, F., Albertí, M., Castro, A., Teixidor, M.M., Cappelletti, D.: Chem. Phys. Lett. 37, 394 (2004)

    Google Scholar 

  23. Pirani, F., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Article  Google Scholar 

  24. Lombardi, A., Palazzetti, F.: J. Mol. Struct. (THEOCHEM) 852, 22 (2008)

    Article  Google Scholar 

  25. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: J. Comp. Chem. 33, 1806 (2012)

    Article  Google Scholar 

  26. Albertí, M., Pirani, F., Laganà, A.: Carbon dioxide clathrate hydrates: selective role of intermolecular interactions and action of the SDS catalyst. J. Phys. Chem. A. 117, 6991–7000 (2013)

    Article  Google Scholar 

  27. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: J. Phys. Chem. A 117, 11430–11440 (2013)

    Article  Google Scholar 

  28. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: J. Chem. Phys. 143, 034307 (2015)

    Article  Google Scholar 

  29. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: J. Comp. Chem. 37, 1463–1475 (2016)

    Article  Google Scholar 

  30. Lago, F.N., Albertì, M.: Eur. Phys. J. D 67, 73 (2013)

    Article  Google Scholar 

  31. Albertì, M., Lago, N.F., Pirani, F.: J. Phys. Chem. A 115, 10871–10879 (2011)

    Article  Google Scholar 

  32. Bruno, D., Catalfamo, C., Capitelli, M., Colonna, G., De Pascale, O., Diomede, P., Gorse, C., Laricchiuta, A., Longo, S., Giordano, D., Pirani, F.: Phys. Plasmas 17, 112315 (2010)

    Article  Google Scholar 

  33. Albertí, M., Huarte-Larrañaga, F., Aguilar, A., Lucas, J.M., Pirani, F.: Phys. Chem. Chem. Phys. 13, 8251 (2011)

    Article  Google Scholar 

  34. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for n-methylacetamide and carbon dioxide dimers. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_\text{2 }\)O)\(_\text{ m }\) or Benzene (C\(_\text{6 }\)H\(_\text{6 }\))\(_\text{ n }\) aggregates to solvate the K\(^ \text{+ } \)? In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.J.: Mol. Liquids 204, 192–197 (2015)

    Article  Google Scholar 

  39. Faginas-Lago, N., Albertí, M., Costantini, A., Laganà, A., Lombardi, A., Pacifici, L.: J. Mol. Model. 20, 2226 (2014)

    Article  Google Scholar 

  40. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.J.: Comput. Chem. 34, 2668 (2013)

    Article  Google Scholar 

  41. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Ion-water cluster molecular dynamics using a semiempirical intermolecular potential. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 355–370. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  42. Faginas Lago, N., Huarte-Larra ñaga, F., Albertí, M.: Eur. Phys. J. D 55, 75–85 (2009)

    Article  Google Scholar 

  43. Albertí, M., Faginas Lago, N., Pirani, F.: Chem. Phys. 399, 232 (2012)

    Article  Google Scholar 

  44. Albertí, M., Faginas Lago, N.: Ion size influence on the Ar solvation shells of Mi\(^+\)-C\(_6\)F\(_6\) Clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116, 3094 (2012)

    Article  Google Scholar 

  45. Albertí, M., Faginas Lago, N., Laganà, A., Pirani, F.: Phys. Chem. Chem. Phys. 13, 8422–8432 (2011)

    Article  Google Scholar 

  46. Lombardi, A., Faginas-Lago, N., Laganà, A.: Grid calculation tools for massive applications of collision dynamics simulations: carbon dioxide energy transfer. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 627–639. Springer, Heidelberg (2014)

    Google Scholar 

  47. Schatz, G.C.: Fitting potential energy surfaces. In: Laganà, A., Riganelli, A. (eds.) Reaction and Molecular Dynamics. Lecture Notes in Chemistry, vol. 75, pp. 15–32. Springe, Heidelberg (2000)

    Chapter  Google Scholar 

  48. Albernaz, A., Aquilanti, V., Barreto, P., Caglioti, C., Cruz, A.C., Grossi, G., Lombardi, A., Palazzetti, F.: J. Phys. Chem. A (2016). doi:10.1021/acs.jpca.6b01718

    Google Scholar 

  49. Pack, R.T.: Chem. Phys. Lett. 55, 197 (1978)

    Article  Google Scholar 

  50. Candori, R., Pirani, F., Vecchiocattivi, F.: Chem. Phys. Lett. 102, 412 (1983)

    Article  Google Scholar 

  51. Beneventi, L., Casavecchia, P., Volpi, G.G.: J. Chem. Phys. 85, 7011 (1986)

    Article  Google Scholar 

  52. Beneventi, L., Casavecchia, P., Pirani, F., Vecchiocattivi, F., Volpi, G.G., Brocks, G., van der Avoird, A., Heijmen, B., Reuss, J.: J. Chem. Phys. 95, 195 (1991)

    Article  Google Scholar 

  53. Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: Phys. Chem. Chem. Phys. 10, 4281 (2008)

    Article  Google Scholar 

  54. Gomez, L., Bussery-Honvault, B., Cauchy, T., Bartolomei, M., Cappelletti, D., Pirani, F.: Chem. Phys. Lett. 445, 99 (2007)

    Article  Google Scholar 

  55. Bartolomei, M., Carmona-Novillo, E., Hernández, M.I., Campos-Martínez, J., Hernández-Lamoneda, R.: J. Comput. Chem. 32, 279 (2011)

    Article  Google Scholar 

  56. Carter, S., Murrell, J.N.: Croat. Chem. Acta 57, 355 (1984)

    Google Scholar 

  57. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    Book  MATH  Google Scholar 

  58. Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.-H., Peslherbe, G.H., Swamy, K.N., Linde, S.R.V., Zhu, L., Varandas, A.M., Wang, H., Wolf, R.J.: J. Quantum Chem. Prog. Exch. Bull. 16, 671 (1996)

    Google Scholar 

  59. Hu, X., Hase, W.L., Pirraglia, T.: J. Comput. Chem. 1014, 12 (1991)

    Google Scholar 

Download references

Acknowledgments

Andrea Lombardi acknowledges financial support from the Dipartimento di Chimica, Biologia e Biotecnologie dell’Universitá di Perugia (FRB grant), from MIUR PRIN 2010-2011 (contract 2010ERFKXL\(\_\)002) and from “Fondazione Cassa Risparmio Perugia (Codice Progetto: 2015.0331.021 Ricerca Scientifica e Tecnologica)”. Federico Palazzetti, Andrea Lombardi and Vincenzo Aquilanti acknowledge the Italian Ministry for Education, University and Research, MIUR, for financial support through SIR 2014 Scientific Independence for young Researchers (RBSI14U3VF) and FIRB 2013 Futuro in Ricerca (RBFR132WSM\(\_\)003). Vincenzo Aquilanti thanks CAPES for the appointment as Professor Visitante Especial at Instituto de Fìsica, Universidade Federal de Bahia, Salvador (Brazil). Calculations were performed thanks to the support of the Virtual Organization COMPCHEM and the allocated computing time from the OU Supercomputing Center for Education&Research (OSCER) at the University of Oklahoma(OU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lombardi, A., Faginas-Lago, N., Gaia, G., Federico, P., Aquilanti, V. (2016). Collisional Energy Exchange in CO\(_2\)–N\(_2\) Gaseous Mixtures. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation