Prokaryotic Selenoproteins and Selenoproteomes

  • Chapter
  • First Online:
Selenium

Abstract

The essential micronutrient selenium is known to be used in a variety of biological processes in both prokaryotes and eukaryotes. The major biological form of selenium is selenocysteine, which is co-translationally inserted into selenoproteins. In the past decade, bioinformatics tools have been successfully developed to identify all, or almost all, selenoprotein genes in sequenced genomes. This chapter provides general information about currently known prokaryotic selenoprotein families and their major functions. In addition, recent comparative analyses of selenocysteine utilization and selenoproteomes across large groups of species offer important insights into evolutionary trends of different selenoprotein families and key factors that may influence selenoprotein evolution in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J Köhrle et al 2000 Biol Chem 381:849

    Article  Google Scholar 

  2. SJ Fairweather-Tait et al 2011 Antioxid Redox Signal 14:1337

    Article  CAS  PubMed  Google Scholar 

  3. A Böck et al 1991 Mol Microbiol 5:515

    Article  PubMed  Google Scholar 

  4. TC Stadtman 1996 Annu Rev Biochem 65:83

    Article  CAS  PubMed  Google Scholar 

  5. DL Hatfield, VN Gladyshev 2002 Mol Cell Biol 22:3565

    Google Scholar 

  6. WP Tate et al 1999 Biochemistry (Mosc) 64:1342

    Google Scholar 

  7. J Donovan, PR Copeland 2010 Antioxid Redox Signal 12:881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L Johansson et al 2005 Biochim Biophys Acta 1726:1

    Article  CAS  PubMed  Google Scholar 

  9. A Böck 2000 Biofactors 11:77

    Article  PubMed  Google Scholar 

  10. S Yoshizawa, A Böck 2009 Biochim Biophys Acta 1790:1404

    Article  CAS  PubMed  Google Scholar 

  11. DM Driscoll, PR Copeland 2003 Annu Rev Nutr 23:17

    Google Scholar 

  12. M Rother et al 2001 Biofactors 14:75

    Article  CAS  PubMed  Google Scholar 

  13. C Allmang et al 2009 Biochim Biophys Acta 1790:1415

    Article  CAS  PubMed  Google Scholar 

  14. JE Squires, MJ Berry 2008 IUBMB Life 60:232

    Google Scholar 

  15. XM Xu et al 2007 Biol Trace Elem Res 119:234

    Article  CAS  PubMed  Google Scholar 

  16. D Behne et al 1990 Biochem Biophys Res Commun 173:1143

    Article  CAS  PubMed  Google Scholar 

  17. VN Gladyshev et al 1998 J Biol Chem 273:8910

    Article  CAS  PubMed  Google Scholar 

  18. BL Berg BL et al 1991 J Biol Chem 266:22386

    Google Scholar 

  19. GF Chen et al 1993 J Biol Chem 268:23128

    CAS  PubMed  Google Scholar 

  20. Y Zhang, VN Gladyshev 2005 Bioinformatics 21:2580

    Google Scholar 

  21. Y Zhang et al 2005 Genome Biol 6:R37

    Article  PubMed  PubMed Central  Google Scholar 

  22. Y Zhang, VN Gladyshev 2007 Nucleic Acids Res 35:4952

    Google Scholar 

  23. R Wilting et al 1997 J Mol Biol 266:637

    Article  CAS  PubMed  Google Scholar 

  24. GV Kryukov, VN Gladyshev 2004 EMBO Rep 5:538

    Google Scholar 

  25. Y Zhang, VN Gladyshev 2008 PLoS Genet 4:e1000095

    Google Scholar 

  26. BN Chaudhuri, TO Yeates 2005 Genome Biol 6:R79

    Google Scholar 

  27. VN Gladyshev et al 1994 Proc Natl Acad Sci USA 91:7708

    Google Scholar 

  28. JG Ferry 1990 FEMS Microbiol Rev 7:377

    Article  CAS  PubMed  Google Scholar 

  29. H Romero et al 2005 Genome Biol 6:R66

    Article  PubMed  PubMed Central  Google Scholar 

  30. Y Zhang et al 2006 Genome Biol 7:R94

    Article  PubMed  PubMed Central  Google Scholar 

  31. GM Lacourciere 1999 Biofactors 10:237

    Google Scholar 

  32. JA Vorholt et al 1997 Mol Microbiol 23:1033

    Google Scholar 

  33. E Garcin et al 1999 Structure 7:557

    Article  CAS  PubMed  Google Scholar 

  34. MX Sliwkowski, TC Stadtman 1988 Proc Natl Acad Sci USA 85:368

    Google Scholar 

  35. S Kreimer, JR Andreesen 1995 Eur J Biochem 234:192

    Article  CAS  PubMed  Google Scholar 

  36. M Wagner et al 1999 Eur J Biochem 260:38

    Article  CAS  PubMed  Google Scholar 

  37. S Jackson 2006 J Bacteriol 188:8487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. UC Kabisch et al 1999 J Biol Chem 274:8445

    Article  CAS  PubMed  Google Scholar 

  39. B Söhling et al 2001 Biol Chem 382:979

    Article  PubMed  Google Scholar 

  40. MJ Kim et al 2015 Biochem Biophys Res Commun 461:648

    Google Scholar 

  41. T Stock et al 2010 Mol Microbiol 75:149

    Article  CAS  PubMed  Google Scholar 

  42. I Cózar-Castellano et al 2004 Biochim Biophys Acta 1700:179

    Article  PubMed  Google Scholar 

  43. PD Whanger 2000 Cell Mol Life Sci 57:1846

    Article  CAS  PubMed  Google Scholar 

  44. HY Kim 2013 Antioxid Redox Signal 19:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. HY Kim et al 2006 Biochemistry 45:13697

    Google Scholar 

  46. HY Kim et al 2009 Proteins 74:1008

    Google Scholar 

  47. Y Zhang, VN Gladyshev 2010 J Biol Chem 285:3393

    Article  CAS  PubMed  Google Scholar 

  48. EH Lee et al 2014 Arch Biochem Biophys 545:1

    Google Scholar 

  49. MJ Kim et al 2015 Biochem Biophys Res Commun 457:567

    Google Scholar 

  50. P Cravedi et al 2015 Genome Biol Evol 7:2692

    CAS  PubMed  PubMed Central  Google Scholar 

  51. M Mariotti et al 2015 Genome Res 25:1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T Peng et al 2016 ISME J doi:10.1038/ismej.2015.246

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [NO. 31171233] and the Natural Science Foundation of Guangdong Province [No. 2015A030313555].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Y. (2016). Prokaryotic Selenoproteins and Selenoproteomes. In: Hatfield, D., Schweizer, U., Tsuji, P., Gladyshev, V. (eds) Selenium. Springer, Cham. https://doi.org/10.1007/978-3-319-41283-2_12

Download citation

Publish with us

Policies and ethics

Navigation