Resistance to PI3K Pathway Inhibition

  • Chapter
  • First Online:
PI3K-mTOR in Cancer and Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 940 Accesses

Abstract

The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancer and aberrant activation promotes transformation. Major efforts are currently being aimed at pharmacologically targeting the pathway for cancer therapy. Early results have yielded more limited success than has been seen for other selective inhibitors of mutant oncoprotein drivers. In this chapter, we review the biological reasons that may account for such intrinsic and acquired resistance to PI3K-targeted therapy. Mechanisms of resistance commonly seen in models include: (1) relief of negative feedback regulatory programs resulting in induction of upstream pathway signaling, which counteracts drug action and attenuates efficacy and (2) coincident activation of alternate growth signaling pathways. The understanding of how tumors with oncogenic PI3K pathway activation circumvent pharmacologic inhibition suggests that combination therapy will be necessary in many contexts in order to see durable responses. Indeed, more recent clinical efforts testing PI3K-directed therapy have been designed under the assumption that up front combination therapy will be necessary for efficacy. These clinical trials are increasingly employing state-of-the-art correlative analyses including next generation sequencing to determine predictors of sensitivity. Clinical data paired with these correlative analyses will be indispensible in determining the optimal agents, combinations, and genotypes to treat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  2. Chandarlapaty S (2012) Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discovery 2(4):311–319. doi:10.1158/2159-8290.CD-12-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, Poulikakos PI, Fagin JA, Rosen N (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22(5):668–682. doi:10.1016/j.ccr.2012.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA (2013) Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discovery 3(5):520–533. doi:10.1158/2159-8290.CD-12-0531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106(11):4519–4524. doi:10.1073/pnas.0900780106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ercan D, Xu C, Yanagita M, Monast CS, Pratilas CA, Montero J, Butaney M, Shimamura T, Sholl L, Ivanova EV, Tadi M, Rogers A, Repellin C, Capelletti M, Maertens O, Goetz EM, Letai A, Garraway LA, Lazzara MJ, Rosen N, Gray NS, Wong KK, Janne PA (2012) Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discovery 2(10):934–947. doi:10.1158/2159-8290.CD-12-0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM, Kobayashi M (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14(6):783–794

    Article  CAS  PubMed  Google Scholar 

  8. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res 66(3):1500–1508. doi:10.1158/0008-5472.CAN-05-2925

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4(10):1533–1540. doi:10.1158/1535-7163.MCT-05-0068

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Wang X, Yue P, Tao H, Ramalingam SS, Owonikoko TK, Deng X, Wang Y, Fu H, Khuri FR, Sun SY (2013) Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced AKT phosphorylation. J Biol Chem 288(19):13215–13224. doi:10.1074/jbc.M113.463679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon Y, Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. Journal of clinical oncology. Off J Am Soc Clin Oncol 26(10):1603–1610. doi:10.1200/JCO.2007.14.5482

    Google Scholar 

  12. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8. doi:10.1371/journal.pmed.0050008

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322. doi:10.1126/science.1199498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies GRB10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326. doi:10.1126/science.1199484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discovery 1(3):248–259. doi:10.1158/2159-8290.CD-11-0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7(2):e38. doi:10.1371/journal.pbio.1000038

    Article  PubMed  Google Scholar 

  17. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19(1):58–71. doi:10.1016/j.ccr.2010.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakrabarty A, Sanchez V, Kuba MG, Rinehart C, Arteaga CL (2012) Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci USA 109(8):2718–2723. doi:10.1073/pnas.1018001108

    Article  CAS  PubMed  Google Scholar 

  19. Gajria D, King T, Pannu H, Sakr R, Modi S, Drullinsky P, Syldor A, Patil S, Seidman A, Norton L, Rosen N, Hudis C, Chandarlapaty S (2012) Tolerability and efficacy of targeting both mTOR and HER2 signaling in trastuzumab-refractory HER2 + metastatic breast cancer. Cancer Res 72(24 Suppl 3). doi:10.1158/0008-5472.SABCS12-P5-18-04

  20. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, **ong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Nunez R, Hortobagyi GN, Yu D, Esteva FJ (2011) Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol Off J Am Soc Clin Oncol 29(23):3126–3132. doi:10.1200/JCO.2010.32.2321

    Article  CAS  Google Scholar 

  21. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074. doi:10.1172/JCI34739

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S, Gili M, Russillo M, Parra JL, Singh S, Arribas J, Rosen N, Baselga J (2011) PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30(22):2547–2557. doi:10.1038/onc.2010.626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, Rosen N (2010) PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res 70(17):6804–6814. doi:10.1158/0008-5472.CAN-10-0409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356. doi:10.1038/nm.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, Russo M, Cancelliere C, Zecchin D, Mazzucchelli L, Sasazuki T, Shirasawa S, Geuna M, Frattini M, Baselga J, Gallicchio M, Biffo S, Bardelli A (2010) Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 120(8):2858–2866. doi:10.1172/JCI37539

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ihle NT, Lemos R Jr, Wipf P, Yacoub A, Mitchell C, Siwak D, Mills GB, Dent P, Kirkpatrick DL, Powis G (2009) Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic ras is a dominant predictor for resistance. Cancer Res 69(1):143–150. doi:10.1158/0008-5472.CAN-07-6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  CAS  PubMed  Google Scholar 

  28. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi:10.1126/science.1096502

    Article  CAS  PubMed  Google Scholar 

  29. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. doi:10.1158/0008-5472.CAN-07-6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor BS, Schultz N, Hieronymus H, Gopalan A, **ao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22. doi:10.1016/j.ccr.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19(5):575–586. doi:10.1016/j.ccr.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL (2004) HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6(5):517–527. doi:10.1016/j.ccr.2004.09.031

    Article  CAS  PubMed  Google Scholar 

  33. Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, Lluch A, Gray JW, Brown PH, Hilsenbeck SG, Osborne CK, Mills GB, Lee AV, Schiff R (2010) Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER + breast cancer. Breast Cancer Res BCR 12(3):R40. doi:10.1186/bcr2594

    Article  PubMed  Google Scholar 

  34. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308(5725):1181–1184. doi:10.1126/science.1109083

    Article  CAS  PubMed  Google Scholar 

  35. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, Fernandez Y, Herance JR, Gispert JD, Mendizabal L, Aguilar S, Ramon Y, Cajal S, Schwartz S, Jr., Vivancos A, Espin E, Rojas S, Baselga J, Tabernero J, Munoz A, Palmer HG (2012) Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 18(6):892–901. doi:10.1038/nm.2772

    Google Scholar 

  36. Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A, Yang J, Semaan DJ, Chen C, Fox EA, Gray NS, Monahan J, Schlegel R, Beroukhim R, Mills GB, Zhao JJ (2011) Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med 17(9):1116–1120. doi:10.1038/nm.2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H, Craig-Mueller N, Colinge J, Duernberger G, Nijman SM (2011) A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 7(11):787–793. doi:10.1038/nchembio.695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan J, Li Z, Lee PL, Guan P, Aau M, Lee ST, Feng M, Lim CZ, Lee EY, Wee ZN, Lim YC, Karuturi RK, Yu Q (2013) PDK1 signaling towards PLK1-Myc activation confers oncogenic transformation and tumor initiating cell activation and resistance to mTOR-targeted therapy. Cancer Discovery. doi:10.1158/2159-8290.CD-12-0595

    PubMed  Google Scholar 

  39. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Muller U, Murakami M, Radimerski T, Bentires-Alj M (2012) JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 22(6):796–811. doi:10.1016/j.ccr.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  40. Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, Serra V, Rodrik-Outmezguine V, Hazra S, Singh S, Kim P, Quadt C, Liu M, Huang A, Rosen N, Engelman JA, Scaltriti M, Baselga J (2013) mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci Trans Med 5(196):196–199. doi:10.1126/scitranslmed.3005747

    Google Scholar 

  41. Shi Y, Wang J, Chandarlapaty S, Cross J, Thompson C, Rosen N, Jiang X (2014) PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol 21(6):522–527. doi:10.1038/nsmb.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454(7205):776–779. doi:10.1038/nature07091

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Torbett NE, Luna-Moran A, Knight ZA, Houk A, Moasser M, Weiss W, Shokat KM, Stokoe D (2008) A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J 415(1):97–110. doi:10.1042/BJ20080639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R, Stegmeier F, Yao YM, Lengauer C (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 105(35):13057–13062. doi:10.1073/pnas.0802655105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Castel P, Juric D, Won H, Ainscough B, Ellis H, Ebbesen S, Griffith M, Griffith O, Iyer G, Sgroi D, Isakoff S, Mardis E, Solit D, Lowe S, Quadt C, Peters M, Berger M, Scaltriti M, Baselga J (2014) Loss of PTEN leads to clinical resistance to the PI3Kα inhibitor BYL719 and provides evidence of convergent evolution under selective therapeutic pressure (abstract) abstract LB-327. In: Proceedings of the annual meeting of the American Association for Cancer Research, 8 April 2014

    Google Scholar 

  46. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509. doi:10.1038/nature11249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504. doi:10.1038/nature11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zunder ER, Knight ZA, Houseman BT, Apsel B, Shokat KM (2008) Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110α. Cancer Cell 14(2):180–192. doi:10.1016/j.ccr.2008.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huw LY, O’Brien C, Pandita A, Mohan S, Spoerke JM, Lu S, Wang Y, Hampton GM, Wilson TR, Lackner MR (2013) Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis 2:e83. doi:10.1038/oncsis.2013.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB, Sosman JA, Kefford RF, Long GV, Nelson SF, Ribas A, Lo RS (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724. doi:10.1038/ncomms1727

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529. doi:10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Chandarlapaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shah, P.D., Chandarlapaty, S. (2016). Resistance to PI3K Pathway Inhibition. In: Dey, N., De, P., Leyland-Jones, B. (eds) PI3K-mTOR in Cancer and Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-34211-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34211-5_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-34209-2

  • Online ISBN: 978-3-319-34211-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation