Unconventional Computing Realized with Hybrid Materials Exhibiting the PhotoElectrochemical Photocurrent Switching (PEPS) Effect

  • Chapter
  • First Online:
Advances in Unconventional Computing

Abstract

Increasing demand for high computational power and high density memories enforces rapid development of microelectronic technologies. However, classical, silicon-based electronic elements cannot be miniaturized infinitely. Therefore, in order to sustain rapid development of information processing devices, new approaches towards future computing devices are needed. These approaches encompass either search for new material technologies or new information processing paradigms. In this chapter we present our contribution to the field including both approaches. We introduce classical, Boolean logic devices based on different materials and nanoscale implementations of ternary logic, fuzzy logic and neuromimetic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidian, M.R., Martin, D.C.: Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19, 573–585 (2009)

    Article  Google Scholar 

  2. Martino, N., Ghezzi, D., Benfenati, F., Lanzani, G., Antognazza, M.R.: Organic semiconductors for artificial vision. J. Mater. Chem. B 1, 3768–3780 (2013)

    Article  Google Scholar 

  3. Somasundaram, S., Chenthamarakshan, C.R., de Tacconi, N.R., Ming, Y., Rajeshwar, K.: Photoassisted deposition of chalcogenide semiconductors on the titanium dioxide surface: mechanistic and other aspects. Chem. Mater. 16, 3846–3852 (2004)

    Article  Google Scholar 

  4. de Tacconi, N.R., Chenthamarakshan, C.R., Rajeshwar, K., Tacconi, E.J.: Selenium modified titanium dioxide photochemical diode/electrolyte junctions: photocatalytic and electrochemical preparation, characterization and model simulations. J. Phys. Chem. B 109, 11953–11960 (2005)

    Article  Google Scholar 

  5. Rajeshwar, K., de Tacconi, N.R., Chenthamarakshan, C.R.: Spatially directed electrosynthesis of semiconductors for photoelectrochemical applications. Curr. Opin. Solid State 8, 173–182 (2004)

    Article  Google Scholar 

  6. Poznyak, S.K., Kulak, A.I.: Photoelectrochemical properties of bismuth oxyhalide films. Electrochim. Acta 35, 1941–1947 (1990)

    Article  Google Scholar 

  7. Szaciłowski, K., Macyk, W.: Chemical switches and logic gates based on surface modified semiconductors. Comptes Rendus Chim. 9, 315–324 (2006)

    Article  Google Scholar 

  8. Memming, R.: Semiconductor Electrochemistry, 1st edn. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  9. Kwolek, P., Szaciłowski, K.: Photoelectrochemistry of n-type bismuth oxyiodide. Electrochim. Acta 104, 448–453 (2013)

    Article  Google Scholar 

  10. Kwolek, P., Pilarczyk, K., Tokarski, T., Mech, J., Irzmański, J., Szaciłowsk, K.: Photoelectrochemistry of n-type antimony sulfoiodide nanowires. Nanotechnology 26, 105710-1–105710-9 (2015)

    Article  Google Scholar 

  11. Kwolek, P., Pilarczyk, K., Tokarski, T., Lapczynska, M., Pacia, M., Szacilowski, K.: Lead molybdate - a promising material for optoelectronics and photocatalysis. J. Mater. Chem. C. 3, 2614–2623 (2015)

    Article  Google Scholar 

  12. Beránek, R., Kisch, H.: A hybrid semiconductor electrode for wavelength-controlled switching of the photocurrent direction. Angew. Chem. Int. Ed. 47, 1320–1322 (2008)

    Article  Google Scholar 

  13. Kwolek, P., Pilarczyk, K., Tokarski, T., Lewandowska, K., Szacilowski, K.: BixLa1-xVO4 solid solutions: tuning of electronic properties via stoichiometry modifications. Nanoscale 6(4), 2244–2254 (2014)

    Article  Google Scholar 

  14. Wardman, P.: Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637–1755 (1989)

    Article  Google Scholar 

  15. Sawyer, D.T., Valentine, J.S.: How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981)

    Article  Google Scholar 

  16. Bard, A.J., Stratmann, M., Licht, S.: Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry. Wiley, Weinheim (2002)

    Google Scholar 

  17. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., et al.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  Google Scholar 

  18. Tan, M.X., Laibinis, P.E., Nguyen, S.T., Kesselman, J.M., Stanton, C.E., Lewis, N.S.: Principles and applications of semiconductor photoelectrochemistry. Prog. Inorg. Chem. 41, 21–144 (1994)

    Article  Google Scholar 

  19. van de Krol, R., Grätzel, M.: Photoelectrochemical Hydrogen Production. Springer, New York (2011)

    Google Scholar 

  20. Yin, W.J., Wei, S.H., Al-Jassim, M.M., Turner, J., Yan, Y.: Do** properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys. Rev. B 83(15), 1–11 (2011)

    Article  Google Scholar 

  21. Hodes, G., Howell, I.D.J., Peter, L.M.: Nanocrystalline photoelectrochemical cells a new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992)

    Article  Google Scholar 

  22. Szaciłowski, K., Macyk, W., Stochel, G.: Synthesis, structure and photoelectrochemical properties of the TiO\(_{2}\) - Prussian blue nanocomposite. J. Mater. Chem. 16, 4603–4611 (2006)

    Article  Google Scholar 

  23. Macyk, W., Stochel, G., Szaciłowski, K.: Photosensitization and photocurrent switching effect in nanocrystalline titanium dioxide functionalized with iron(II) complexes: a comparative study. Chem. Eur. J. 13, 5676–5687 (2007)

    Article  Google Scholar 

  24. Gawęda, S., Stochel, G., Szaciłowski, K.: Bioinspired nanodevice based on the folic acid/titanium dioxide system. Chem. Asian J. 2, 580–590 (2007)

    Article  Google Scholar 

  25. Gawęda, S., Stochel, G., Szaciłowski, K.: Photosensitization and photocurrent switching in carminic acid/titanium dioxide hybrid material. J. Phys. Chem. C 112, 19131–19141 (2008)

    Article  Google Scholar 

  26. Podborska, A., Gaweł, B., Pietrzak, Ł., Szymańska, I.B., Jeszka, J.K., Łasocha, W., et al.: Anomalous photocathodic behavior of CdS within the Urbach tail region. J. Phys. Chem. C 113, 6774–6784 (2009)

    Article  Google Scholar 

  27. Hebda, M., Stochel, G., Szaciłowski, K., Macyk, W.: Optoelectronic switches based on wide bandgap semiconductors. J. Phys. Chem. B 110, 15275–15283 (2006)

    Article  Google Scholar 

  28. Szaciłowski, K., Macyk, W., Stochel, G.: Light-driven OR and XOR programmable chemical logic gates. J. Am. Chem. Soc. 128, 4550–4551 (2006)

    Article  Google Scholar 

  29. Szaciłowski, K., Macyk, W.: Working prototype of an optoelectronic XOR/OR/YES reconfigurable logic device based on nanocrystalline semiconductors. Solid State Electron. 50, 1649–1655 (2006)

    Article  Google Scholar 

  30. Lu, B., Zhu, Y.: Synthesis and photocatalysi performances of bismuth oxynitrate with layared structures. Phys. Chem. Chem. Phys. 16, 16509–16514 (2014)

    Article  Google Scholar 

  31. El Harakeh, M., Alawieh, L., Saouma, S., Halaoui, L.I.: Charge separation and photocurrent polarity-switching at CdS quantum dots assembly in polyelectrolyte interfaced with hole scavengers. Phys. Chem. Chem. Phys. 11, 5962–5973 (2009)

    Article  Google Scholar 

  32. Ogawa, S., Hu, K., Fan, F., Bard, A.J.: Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self-assembled monolayers on gold. J. Phys. Chem. B 101, 5707–5711 (1997)

    Article  Google Scholar 

  33. Gawęda, S., Kowalik, R., Kwolek, P., Macyk, W., Mech, J., Oszajca, M., et al.: Nanoscale digital devices based on the photoelectrochemical photocurrent switching effect: preparation, properties and applications. Isr. J. Chem. 51, 36–55 (2011)

    Article  Google Scholar 

  34. Kuncewicz, J., Ząbek, P., Kruczała, K., Szaciłowski, K., Macyk, W.: Photocatalysis involving a visible light-induced hole injection in a chromate(VI)-TiO\(_{2}\) system. J. Phys. Chem. C 116, 21762–21770 (2012)

    Article  Google Scholar 

  35. Chen, X., Yeganeh, S., Qin, L., Li, S., Xue, C., Braunschweig, A.B., et al.: Chemical fabrication of heterometallic nanogaps for molecular transport junctions. Nano Lett. 12, 3974–3979 (2009)

    Article  Google Scholar 

  36. Prezhdo, O.V., Duncan, W.R., Prezhdo, V.V.: Photoinduced electron dynamics at the chromophore-semiconductor interface: a time-domain ab initio perspective. Prog. Surf. Sci. 84, 30–68 (2009)

    Article  Google Scholar 

  37. Creutz, C., Brunschwig, B.S., Sutin, N.: Interfacial charge transfer absorption: semiclassical treatment. J. Phys. Chem. B 109, 10251–10260 (2005)

    Article  Google Scholar 

  38. Creutz, C., Brunschwig, B.S., Sutin, N.: Interfacial charge transfer absorption: application to metal-molecule assemblies. Chem. Phys. 324, 244–258 (2006)

    Article  Google Scholar 

  39. Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., et al.: Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107, 6668–6697 (2003)

    Article  Google Scholar 

  40. Creutz, C., Brunschwig, B.S., Sutin, N.: Interfacial charge transfer absortion: 3. application to semiconductor-molecule assemblies. J. Phys. Chem. B 110, 25181–25190 (2006)

    Article  Google Scholar 

  41. Sakata, T., Hashimoto, K., Hiramoto, M.: New aspects of electron transfer on semiconductor surface: dye-sensitization system. J. Phys. Chem. 94, 3040–3045 (1990)

    Article  Google Scholar 

  42. Kitao, O.: Photoinduced electron transfer in dye-sensitized solar cells: modified Sakata-Hashimoto-Hiramoto model (MSHH). J. Phys. Chem. C 111, 15889–15902 (2007)

    Article  Google Scholar 

  43. Kwolek, P., Oszajca, M., Szaciłowski, K.: Catecholate and 2,3-acenediolate complexes of d\(^{0}\) ions as prospective materials for molecular electronics and spintronics. Coord. Chem. Rev. 56, 1706–1731 (2012)

    Article  Google Scholar 

  44. Macyk, W., Szaciłowski, K., Stochel, G., Buchalska, M., Kuncewicz, J., Łabuz, P.: Titanium(IV) complexes as direct TiO\(_{2}\) photosensitizers. Coord. Chem. Rev. 254, 2687–2701 (2010)

    Article  Google Scholar 

  45. Oszajca, M., Kwolek, P., Mech, J., Szaciłowski, K.: Substituted polyacenes as prospective modifiers of TiO\(_{2}\) surface. Curr. Phys. Chem. 1, 242–260 (2011)

    Article  Google Scholar 

  46. Rego, L.G.C., Batista, V.S.: Quantum dynamics simulations of interfacial electron transfer in sensitized TiO\(_{2}\) semiconductors. J. Am. Chem. Soc. 125, 7989–7997 (2003)

    Article  Google Scholar 

  47. Abuabara, S.G., Rego, L.G.C., Batista, V.S.: Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO\(_{2}\) semiconductors. J. Am. Chem. Soc. 127, 18234–18242 (2005)

    Article  Google Scholar 

  48. Prezhdo, O.V., Duncan, W.R., Prezhdo, V.V.: Dynamics of the photoexcited electron at the chromophore-semiconductor interface. Acc. Chem. Res. 41(2), 339–348 (2008)

    Article  Google Scholar 

  49. Duncan, W.R., Prezhdo, O.V.: Theoretical studies of photoinduced electron transfer in dye-sensitized TiO\(_{2}\). Annu. Rev. Phys. Chem. 58, 143–184 (2007)

    Article  Google Scholar 

  50. Ardo, S., Meyer, G.J.: Photodriven heterogeneous charge transfer with transition-metal compounds anchoder to TiO\(_{2}\) surfaces. Chem. Soc. Rev. 38, 115–164 (2009)

    Article  Google Scholar 

  51. Duncan, W.R., Stier, W.M., Prezhdo, O.V.: Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO\(_{2}\) interface. J. Am. Chem. Soc. 127, 7941–7951 (2005)

    Article  Google Scholar 

  52. Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M.: Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 106, 10543–10552 (2002)

    Article  Google Scholar 

  53. Regazzoni, A.E., Mandelbaum, P., Matsuyoshi, M., Schiller, S., Bilmes, S.A., Blesa, M.A.: Adsorption and photooxidation of salicylic acid on titanium dioxide: a surface complexation description. Langmuir 14, 868–874 (1998)

    Article  Google Scholar 

  54. Szaciłowski, K., Macyk, W.: Photoelectrochemical photocurrent switching effect: a new platform for molecular logic devices. Chimia 61, 831–834 (2007)

    Article  Google Scholar 

  55. Szaciłowski, K., Macyk, W., Hebda, M., Stochel, G.: Redox-controlled photosensitization of nanocrystalline titanium dioxide. Chem. Phys. Chem. 7, 2384–2391 (2006)

    Google Scholar 

  56. Long, M., Beránek, R., Cai, W., Kisch, H.: Hybrid semiconductor electrodes for light-driven photoelectrochemical switches. Electrochim. Acta 53, 4621–4626 (2008)

    Article  Google Scholar 

  57. Agostinelli, G., Dunlop, E.D.: Local inversion of photocurrent in cadmium telluride solar cells. Thin Solid Films 431–432, 448–452 (2003)

    Article  Google Scholar 

  58. Nam, K.M., Park, H.S., Lee, H.C., Meekins, B.H., Leonard, K.C., Bard, A.J.: Compositional screening of the Pb-Bi-Mo-O system. Spontaneous formation of a composite of p-PbMoO\(_{4}\) and n-Bi\(_{2}\)O\(_{3}\) with improved photoelectrochemical efficiency and stability. J. Phys. Chem. Lett. 4, 2707–2710 (2013)

    Article  Google Scholar 

  59. Zheng, J.Y., Song, G., Kim, C.W., Kang, Y.S.: Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectrochemical properties. Electrochim. Acta 69, 340–344 (2012)

    Article  Google Scholar 

  60. Warzecha, M., Oszajca, M., Pilarczyk, K., Szaciłowski, K.: A three-valued photoelectrochemical logic device realising accept anything and consensus operations. Chem. Commun. 51, 3559–3561 (2015)

    Article  Google Scholar 

  61. Lewandowska, K., Podborska, A., Kwolek, P., Kim, T.-D., Lee, K.-S., Szaciłowski, K.: Optical signal demultiplexing and conversion in the fullerene-oligothiophene-CdS system. Appl. Surf. Sci. 319, 285–290 (2014)

    Article  Google Scholar 

  62. Lewandowska, K., Szaciłowski, K.: Molecular photodiode and two-channel demultiplexer based on the [60]fullerene-porphyrin tetrad. Aust. J. Chem. 64, 1409–1413 (2011)

    Article  Google Scholar 

  63. Gawęda, S., Podborska, A., Macyk, W., Szaciłowski, K.: Nanoscale optoelectronic switches and logic devices. Nanoscale 1, 299–316 (2009)

    Article  Google Scholar 

  64. Bendikov, M., Wudl, F., Perepichka, D.F.: Tetrathiafulvalenes, oligoacenes and their buckminsterfullerene derivatives: the bricks and mortar of organic electronics. Chem. Rev. 104, 4891–4945 (2004)

    Article  Google Scholar 

  65. Ishii, H., Sugiyama, K., Ito, E., Seki, K.: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999)

    Article  Google Scholar 

  66. Linsebigler, A.L., Lu, G., Yates Jr., J.T.: Photocatalysis on TiO\(_2\) surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  67. Fujishima, A., Zhang, X., Tryk, D.A.: TiO\(_2\) photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  Google Scholar 

  68. Podborska, A., Szaciłowski, K.: Towards ‘computer-on-a-particle’ devices: optoelectronic 1:2 demultiplexer based on nanostructured cadmium sulfide. Aust. J. Chem. 63, 165–168 (2010)

    Article  Google Scholar 

  69. Maharjan, A., Pemasiri, K., Kumar, P., Wade, A., Smith, L.M., Jackson, H.E., et al.: Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 94, 193115 (2009)

    Article  Google Scholar 

  70. Yang, F., Huang, K., Ni, S., Wang, Q., He, D.: W\(_{18}\)O\(_{49}\) nanowires as ultraviolet photodetector. Nanoscale Res. Lett. 5, 416–419 (2010)

    Article  Google Scholar 

  71. Fang, X., Bando, Y., Liao, M., Gautam, U.K., Zhi, C., Dierre, B., et al.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  72. Zhai, T., Fang, X., Li, L., Bando, Y., Goldberg, D.: One-dimensional CdS nanostructures: synthesis, properties and applications. Nanoscale 2, 168–187 (2010)

    Article  Google Scholar 

  73. Mech, J., Kowalik, R., Podborska, A., Kwolek, P., Szaciłowski, K.: Arithmetic device based on multiple Schottky-like junctions. Aust. J. Chem. 63, 1330–1333 (2010)

    Google Scholar 

  74. Łukasiewicz, J.: Aristtle’s Syllogistic from the Standpoint of Modern Formal Logic. Claredon Press, Oxford (1951)

    MATH  Google Scholar 

  75. Goble, L.: The Blackwell Guide to Philosophical Logic. Wiley-Blackwell, Hoboken (2001)

    Book  MATH  Google Scholar 

  76. Łukasiewicz, J.: In: Borkowski, L. (ed.) Selected Works. North-Holland, Amsterdam (1970)

    Google Scholar 

  77. Fisch, M., Turquette, A.: Peirce’s triadic logic. TCS Peirce Soc. 2, 71–85 (1966)

    MathSciNet  Google Scholar 

  78. Elati, M., Neuvial, P., Bolotin-Fukuhara, M., Barillot, E., Radvanyi, F., Rouveirol, C.: LICORN: learning cooperative regulation networks from gene expression data. Bioinformatics 23, 2407–2414 (2007)

    Article  Google Scholar 

  79. Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 3216–3224 (2010)

    Article  Google Scholar 

  80. IGad, R.: Logical and Linguistic Problems of Social Communication with Aymara People. International Development Research Centre (IDRC), Ottawa (1984)

    Google Scholar 

  81. Miriel, J., Fermanel, F.: Classic wall gas boiler regulation and a new thermostat using fuzzy logic – Improvements achieved with a fuzzy thermostat. Appl Energ. 68, 229–47 (2001)

    Article  Google Scholar 

  82. Glaser, A.: History of Binary and Other Nondecimal Numeration. Tomash Publishers, Los Angeles (1971)

    MATH  Google Scholar 

  83. **, Y., He, H., Lü, Y.: Ternary optical computer principle. Sci. China Ser. F 46, 145–150 (2003)

    Article  Google Scholar 

  84. Brousentsov, N.P., Maslov, S.P., Ramil Alvarez, J., Zhogolev, E.A.: Development of ternary computers at Moscow State University: Russian virtual computer museum. Available from: http://www.computer-museum.ru/english/setun.htm (2010). Accessed 26 March 2010

  85. Stakhov, A.: Brousentsov’s ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic. Comput. J. 45, 221–236 (2002)

    Article  MATH  Google Scholar 

  86. Morisue, M., Endo, J., Morooka, T., Shimizu, N., Sakamoto, M.: In: 28th International Symposium on Multi Valued Logic, pp. 19–24 (1998)

    Google Scholar 

  87. Natarajan, J., Coles, M., Cebollero, M.: Pro T-SQL Programmer’s Guide. Apress, New York (2015)

    Google Scholar 

  88. Liang, J., Chen, L., Han, J., Lombardi, F.: Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs. IEEE Trans. Nanotechnol. 13, 695–708 (2014)

    Article  Google Scholar 

  89. Bajec, I.L., Zimic, N., Mraz, M.: The ternary quantum-dot cell and ternary logic. Nanotechnology 17, 1937–1942 (2006)

    Article  Google Scholar 

  90. Saidutt, P.V., Srinivas V., Phaneendra, P.S., Muthukrishnan, N.M. (eds.): In: 2012 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (2012)

    Google Scholar 

  91. Liu, S., Li, C., Wu, J., Liu, Y.: Optoelectronic multiple-valued logic implementation. Opt. Lett. 14, 713–715 (1989)

    Article  Google Scholar 

  92. Remón, P., Ferreira, R., Montenegro, J.M., Suau, R., Pérez-Inestrosa, E., Pischel, U.: Reversible molecular logic: a photophysical example of a Feynman gate. ChemPhysChem 10, 2004–2007 (2009)

    Article  Google Scholar 

  93. Gentili, P.L.: The human sensory system as a collection of specialized fuzzifiers: a conceptual framework to inspire new artificial intelligent systems computing with words. J. Intell. Fuzzy Syst. 27, 2137–2151 (2014)

    Google Scholar 

  94. Gentili, P.L.: Small steps towards the development of chemical artificial intelligent systems. RSC Adv. 3, 25523–25549 (2013)

    Article  Google Scholar 

  95. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  96. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  97. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Hum. Comput. Stud. 51, 135–147 (1999)

    Article  MATH  Google Scholar 

  98. Bryan, L.A., Bryan, E.A.: Programmable Controllers: Theory and Implementation. Industrial Text Company, Marietta (1997)

    MATH  Google Scholar 

  99. Gentili, P.L., Horvath, V., Vanag, V.K., Epstein, I.R.: Belousov-Zhabotinsky “chemical neuron” as a binary and fuzzy logic processor. Int. J. Uncov. Comput. 8, 177–192 (2012)

    Google Scholar 

  100. Gentili, P.L.: Boolean and fuzzy logic gates based on the interaction of flindersine with bovine serum albumin and tryptophan. J. Phys. Chem. A 112, 11992–11997 (2008)

    Article  Google Scholar 

  101. Gentili, P.L.: Boolean and fuzzy logic implemented at the molecular level. Chem. Phys. 336, 64–73 (2007)

    Article  Google Scholar 

  102. Gentili, P.L.: The fundamental fuzzy logic operators and some complexoolean logic circuits implemented by the chomogenism of a spirooxazine. Phys. Chem. Chem. Phys. 13, 20335–20344 (2011)

    Article  Google Scholar 

  103. Gentili, P.L.: The fuzziness of a chromogenic spiroxazine. Dyes Pigments 110, 235–248 (2014)

    Article  Google Scholar 

  104. Gentili, P.L.: Molecular processors: from qubits to fuzzy logic. ChemPhysChem 12, 739–745 (2011)

    Article  Google Scholar 

  105. Deaton, R., Garzon, M.: Fuzzy logic with biomolecules. Soft Comput. 5, 2–9 (2001)

    Article  MATH  Google Scholar 

  106. Zadegan, R.M., Jepsen, M.D.E., Hildebrandt, L.L., Birkedal, V., Kjems, J.: Small 11, 1811–1817 (2015)

    Article  Google Scholar 

  107. Huynh, V.N., Ho, T.B., Nakamori, Y.: A parametric representation of linguistic hedges in Zadeh’s fuzzy logic. Int. J. Approx. Reason. 30, 203–223 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  108. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–684 (1993)

    Article  Google Scholar 

  109. Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling and control. Proc. IEEE 83, 378–405 (1995)

    Article  Google Scholar 

  110. Available from http://top500.org/

  111. Song, S., Miller, K.D., Abbott, L.F.: Cometitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  112. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  113. Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75(4), 556–571. PubMed PMID: 22920249. Pubmed Central PMCID: 3431193, 23 Aug 2012

    Google Scholar 

  114. Martin, S.J., Grimwood, P.D., Morris, R.G.M.: Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000)

    Article  Google Scholar 

  115. George, D., Jaros, B.: The HTM learning algorithms. Numenta Inc Report (2007)

    Google Scholar 

  116. Hawkins, J., George, D.: Hierarchical Temporal Memory. Concepts, Theory, and Terminology. Numenta Inc Report (2006)

    Google Scholar 

  117. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart dust: communicating with a cubic-millimeter computer. Computer 34, 2–9 (1997)

    Google Scholar 

  118. Link, J.R., Sailor, M.J.: Smart dust: self-assembling, self-orienting photonic crystals of porous Si. Proc. Natl. Acad. Sci. 100, 10607–10610 (2003)

    Article  Google Scholar 

  119. Sailor, M.J., Link, J.R.: Smart dust: nanostructured devices on a grain of sand. Chem. Commun. 11, 1375–1383 (2005)

    Article  Google Scholar 

  120. Katz, E., Willner, I.: Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004)

    Article  Google Scholar 

  121. Katz, E., Willner, I., Wang, J.: Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16, 19–43 (2004)

    Article  Google Scholar 

  122. Burns, A., Ow, H., Wiesner, U.: Fluorescent core-shell silica nanoparticles: towards “lab-on-a-paricle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006)

    Article  Google Scholar 

  123. Burns, A., Sengupta, P., Zedayko, T., Baird, B., Wiesner, U.: Core/shell fluorescent silicananopaticles for chemical sensing: towards single-particle laboratories. Small 2, 723–726 (2006)

    Article  Google Scholar 

  124. Gill, R., Zayats, M., Willner, I.: Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)

    Article  Google Scholar 

  125. Uchiyama, S., McClean, G.D., Iwai, K., de Silva, A.P.: Membrane media create small nanospaces for molecular computation. J Am Chem Soc. 127, 8920–1 (2005)

    Article  Google Scholar 

  126. de Silva, A.P., Dobbin, C.M., Vance, T.P., Wannalerse, B.: Multiply reconfigurable ‘plug and play’ molecular logic via self-assembly. Chem. Commun. 11, 1386–1388 (2009)

    Article  Google Scholar 

  127. Pallavicini, P., Diaz-Fernandez, Y.A., Pasotti, L.: Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coord. Chem. Rev. 253, 2226–2240 (2009)

    Article  Google Scholar 

  128. Erokhin, V., Berzina, T., Smerieri, A., Camorani, P., Erokhina, S., Fontana, M.P.: Bio-inspired adaptive networks based on organic memristors. Nano Commun. Netw. 1, 108–117 (2010)

    Article  Google Scholar 

  129. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., et al.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1, 24–30 (2011)

    Article  Google Scholar 

  130. Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: Non-equlibrium electrical behaviour of polymeric electrochemical junctions. J. Phys. Condens. Matter 19, 205111 (2007)

    Article  Google Scholar 

  131. Berzina, T., Smerieri, A., Barnabó, M., Pucci, A., Ruggieri, G., Erokhin, V., et al.: Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105, 124515 (2009)

    Article  Google Scholar 

  132. Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2010)

    Article  Google Scholar 

  133. Kim, K., Chen, C.-L., Truong, Q., Shen, A.M., Chen, Y.: A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 25, 1693–1698 (2013)

    Article  Google Scholar 

  134. Bichler, O., Zhao, W., Alibart, F., Pleutin, S., Vuillaume, D., Gamrat, C.: Functional model of a nanoparticle organic memory transistor for use as a spiking synapse. IEEE Trans. Electron Devices 57, 3115–3122 (2010)

    Article  Google Scholar 

  135. Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)

    Article  MATH  Google Scholar 

  136. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., et al.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833–840 (2008)

    Article  Google Scholar 

  137. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  138. Legenstein, R., Pecevski, D., Maass, W.: A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback. PLoS Comput Biol. 4, e10000180 (2008)

    Article  MathSciNet  Google Scholar 

  139. Fiete, I.R., Senn, W., Wang, C.Z.H., Hahnloser, R.H.R.: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65, 563–576 (2010)

    Article  Google Scholar 

  140. Rutherglen, C., Burke, P.: Carbon nanotube radio. Nano Lett. 7, 3296–3299 (2007)

    Article  Google Scholar 

  141. Pilarczyk, K., Podborska, A., Lis, M., Kawa, M., Migdal, D., Szaciłowski, K.: Adv. Electron. Mater. (2016) doi:10.1002/aelm.201500471

Download references

Acknowledgments

The financial support from the National Science Centre (grants no. UMO-2012/05/N/ST5/00327, UMO-2013/11/D/ST5/03010 and UMO-2015/18/A/ST4/00058), the Ministry of Science and Higher Education (grant no. IP2012 030772) and the Foundation for Polish Science (grant no. 71/UD/SKILLS/2014 carried-out within the INTER programme, co-financed from the European Union within the European Social Fund) is gratefully acknowledged. P. Kwolek was supported by the Foundation for Polish Science within the START fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kacper Pilarczyk or Konrad Szaciłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pilarczyk, K., Kwolek, P., Podborska, A., Gawęda, S., Oszajca, M., Szaciłowski, K. (2017). Unconventional Computing Realized with Hybrid Materials Exhibiting the PhotoElectrochemical Photocurrent Switching (PEPS) Effect. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation