Sol‐Gel-Prepared Antireflective Coatings

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 430 Accesses

Abstract

Reflection is a fundamental optical phenomenon, which occurs when light propagates across a boundary between two media that have different refractive indices. Using layer systems consisting of thin films with thickness in the range of light wavelength, it is possible to reduce the reflected light to below 0.2% by destructive interference. For this application, silica films were prepared from the mixture of a polymerized tetraethoxysilane (TEOS) sol and a polymerized methyltriethoxysilane (MTES) sol. The surface morphology of the coatings could be controlled by changing the molar ratio of both precursors, and the hydrophobic methyl groups in the silica network caused micro-phase separation. The refractive index of the film with the porous morphology could be controlled by preparation conditions, such as the kind of solvents, the relative humidity of the atmosphere, and the heat treatment temperature. Low-reflective glasses with visible light reflectance of 0.2% could be obtained by applying the present porous silica films with a refractive index of 1.23 to a soda-lime-silica glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashley C, Reed S. U.S. Patent 4929278. 1990.

    Google Scholar 

  • Floch H, Belleville P. A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route. J Sol-Gel Sci Technol. 1994;1:293–304.

    Article  CAS  Google Scholar 

  • Hara K., Inazumi T, Izumitani T. Application of sol-gel derived silica films containing a methyl radical to a slab laser. J. Non-Cryst. Solids. 1988;100:490–93.

    Article  CAS  Google Scholar 

  • Kollmorgan F. Light transmission through telescopes. Trans Illumin Engng Soc. 1916;11:220–34.

    Google Scholar 

  • Li H, Wang A, Das S. Coating composition, process for producing antireflective coatings, and coated articles. US Patent 5,580,819. Dec 3, 1996.

    Google Scholar 

  • Macleod H. Thin-film optical filters. 2nd ed. New York: McGraw Hill Publishing; 1989. p. 48.

    Google Scholar 

  • Mukherjee SP, Lowdermilk WH. Gel-derived single layer antireflection films. J. Non-Cryst Solids 1982;48:177–84.

    Article  CAS  Google Scholar 

  • Nakanishi K, Soga N. Phase-separation in gelling silica organic polymer-solution-systems containing poly(sodium styrenesulfonate). J Am Ceram Soc. 1991;74:2519–530.

    Article  Google Scholar 

  • Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid. 3. Effect of catalytic condition. J Non-Cryst Solids. 1992;142:36–44.

    Article  CAS  Google Scholar 

  • Oliveira P, Krug H, Frantzen A, Mennig M, Schmidt H. Generation of wet-chemical AR-coatings on plastic substrates by use of polymerizable nanoparticles, Sol-Gel Optics IV, Dunn BS, Mackenzie JD, Pope EJA, Schmidt HK, Yamane M, editors. SPIE Proc. 1997;3136:452–61.

    Article  CAS  Google Scholar 

  • Ohishi T, Maekawa S, Ishikawa T, Kamoto D. Preparation and properties of anti-reflection/anti-static thin films for cathode ray tubes prepared by sol-gel method using photoirradiation. J Sol-Gel Sci Technol. 1997;8:511–5.

    Article  CAS  Google Scholar 

  • Ohno M, Yamada T, Kurokawa T. Micron-order relief-patterned silica glass using a sol-gel method. J Appl Phys. 1985;57:2951–62.

    Article  CAS  Google Scholar 

  • Ohno M, Yamada T, Takato N. Yogyo-Kyokai-Shi. 1986;94(7):644–650.

    Google Scholar 

  • Pulker H. Coating on glass. American Elsevier; 1984. p. 92–270.

    Google Scholar 

  • Sakka S. Fibers from the sol-gel process. In: Klein LC, editor. Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes. Park Ridge: Noyes Publications. p. 140–61.

    Google Scholar 

  • Takahashi O, Yamazaki S, Arai H, Hamaguchi S. Sol-gel film and method for forming the same. Japanese Patent 298,545. Oct 25, 1994.

    Google Scholar 

  • Thomas IM. High laser damage threshold porous silica antireflective coating. Appl Opt. 1986;25:1481–3.

    Article  CAS  Google Scholar 

  • Wada T, Sato Y, Suzuki K, Ando H, Chen D, Yan Y, Ono Y, Takamatsu M. Anti-reflections (AR) coating meter. SAE Technical Paper Series. 1999; 1999-01-0897.

    Google Scholar 

  • Yoldas BE, Partlow DP. Wide spectrum antireflective coating for fused-silica and other glasses. Appl Optics. 1984;23:1418–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Yamazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamazaki, S. (2018). Sol‐Gel-Prepared Antireflective Coatings. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_97

Download citation

Publish with us

Policies and ethics

Navigation