Failure of Fiber-Reinforced Composites

  • Chapter
  • First Online:
In Situ Monitoring of Fiber-Reinforced Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 242))

Abstract

Generally, we start to refer to failure of a material, when the material no longer fulfills its intended use. In the context of this book the term “failure” always refers to the structural failure of the material due to mechanical load. The primary source for this failure are cracks forming within a material causing it to reduce its effective cross-section or introducing instability causing buckling, kinking or likewise failure modes. The fracture mechanics concepts of Griffith and Irvin form the basis for the description of crack initiation and propagation in metals, polymers and ceramics. However, in fiber reinforced materials, the hierarchical and heterogeneous microstructure superimposes the isotropic and homogenous properties of the matrix materials. Additional effects arise due to crack branching, crack deflection and mixed mode conditions. Hence, a broad variety of theories is currently applied for the description of failure in fiber reinforced polymers. This chapter starts first with an overview on failure mechanisms in composites and introduces their hierarchical classification. The second part of this chapter briefly reviews failure theories currently applied in the field of fiber reinforced composites. The third part of this chapter then has its focus on the mechanical methods used to provide material properties required as input data for these failure theories. The last section then finally provides a first overview on “secondary” methods as being used to improve the “primary” mechanical methods to obtain valid material data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is still much discussion regarding the general applicability of such failure criteria, so the reader should always be aware of the potential drawbacks of a particular theory.

  2. 2.

    X-Ray refraction is similar to refraction of the visible light and is not identical to the established techniques of X-ray diffraction (see [195]).

References

  1. Yamada, I., Masuda, K., Mizutani, H.: Electromagnetic and acoustic emission associated with rock fracture. Phys. Earth Planet. Inter. 57, 157–168 (1989)

    Article  Google Scholar 

  2. Frid, V., Rabinovitch, A., Bahat, D.: Fracture induced electromagnetic radiation. J. Phys. D Appl. Phys. 36, 1620–1628 (2003)

    Article  Google Scholar 

  3. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921)

    Article  Google Scholar 

  4. Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  5. Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin (2005)

    Google Scholar 

  6. Matthews, F.L., Rawlings, R.D.: Composite Materials: Engineering and Science. Woodhead, Cambridge (1999)

    Google Scholar 

  7. Greenhalgh, E.: Failure Analysis and Fractography of Polymer Composites. Woodhead, Oxford (2009)

    Book  Google Scholar 

  8. Sause, M.: Identification of Failure Mechanisms in Hybrid Materials Utilizing Pattern Recognition Techniques Applied to Acoustic Emission Signals. mbv-Verlag, Berlin (2010)

    Google Scholar 

  9. Kermode, J.R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M.C., Csányi, G., De Vita, A.: Low-speed fracture instabilities in a brittle crystal. Nature 455, 1224–1227 (2008)

    Article  Google Scholar 

  10. He, F., Tan, C.M., Zhang, S., Cheng, S.: Monte Carlo simulation of fatigue crack initiation at elevated temperature. In: 13th Conference on Fracture, pp. 1–10. Bei**g, China (2013)

    Google Scholar 

  11. Guglhoer, T., Manger, F., Sause, M.G.R.: Quantification of local fiber distribution for optimization of tape laying techniques. In: ECCM16—16th European Conference on Composite Materials, pp. 1–9. Sevilla, Spain (2014)

    Google Scholar 

  12. Salaberger, D., Arikan, M., Paier, T., Kastner, J.: Characterization of damage mechanisms in glass fibre reinforced polymers using x-ray computed tomography. In: 11th European Conference on Non-Destructive Testing (ECNDT 2014), pp. 1–9. Prague, Czech Republic (2014)

    Google Scholar 

  13. Hobbiebrunken, T., Hojo, M., Fiedler, B., Tanaka, M., Ochiai, S., Schulte, K.: Thermomechanical analysis of micromechanical formation of residual stresses and initial matrix failure in CFRP. JSME Int. J. Ser. A 47, 349–356 (2004)

    Article  Google Scholar 

  14. Hobbiebrunken, T., Fiedler, B., Hojo, M., Ochiai, S., Schulte, K.: Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses. Compos. Sci. Technol. 65, 1626–1635 (2005)

    Article  Google Scholar 

  15. Greisel, M., Jäger, J., Moosburger-Will, J., Sause, M.G.R., Mueller, W.M., Horn, S.: Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests. Compos. Part A Appl. Sci. Manuf. 66, 117–127 (2014)

    Article  Google Scholar 

  16. Tanaka, T., Nakayama, H., Sakaida, A., Horikawa, N.: Estimation of tensile strength distribution for carbon fiber with diameter variation along fiber. Mater. Sci. Res. Int. 5, 90–97 (1999)

    Google Scholar 

  17. Jumahat, A., Soutis, C., Jones, F., Hodzic, A.: Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Compos. Struct. 92, 295–305 (2010)

    Article  Google Scholar 

  18. Alhashmi, H., Kumar, S.: Micro-mechanical modeling of fiber pull-out stresses in an axisymmetric composite system. In: ECCM16—16th European Conference on Composite Materials, pp. 1–9. Sevilla, Spain (2014)

    Google Scholar 

  19. Yang, L., Thomason, J.L.: Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microdebond methods. In: ICCM 17—17th International Conference on Composite Materials, pp. 1–9, Edinburgh (2009)

    Google Scholar 

  20. Lin, Y., Scheuring, T., Friedrich, K.: Matrix morphology and fibre pull-out strength of T700/PPS and T700/PET thermoplastic composite. J. Mater. 30, 4761–4769 (1995)

    Article  Google Scholar 

  21. Pisanova, E., Zhandarov, S., Mäder, E.: How can adhesion be determined from micromechanical tests? Compos. Part A Appl. Sci. Manuf. 32, 425–434 (2001)

    Article  Google Scholar 

  22. Novak, J., Pearce, C.J., Grassl, P., Yang, L., Thomason, J.: Analysis of the microbond test using nonlinear fracture mechanics. In: ICCM 17—17th International Conference on Composite Materials, pp. 1—13. Edinburgh (2009)

    Google Scholar 

  23. Fuentes, C.A., Brughmans, G., Verpoest, I., van Vuure, A.W., Tran, L.Q.N., Dupont-Gillain, C.: Effect of roughness on the interface in natural fibre composites: physical adhesion and mechanical interlocking. In: ECCM16—16th European Conference on Composite Materials. Sevilla, Spain (2014)

    Google Scholar 

  24. Reifsnider, K., Sendeckyj, G., Wang, S., Johnson, W., Stinchcomb, W., Pagano, N., Nahas, M.: Survey of failure and post-failure theories of laminated fiber-renforced composites. J. Compos. Technol. Res. 8, 138 (1986)

    Article  Google Scholar 

  25. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten Modelle für die Praxis. Carl Hanser Verlag, Munich, Germany (1996)

    Google Scholar 

  26. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  27. Wu, E.: Phenomenological anisotropic failure criteria. Mech. Compos. Mater. 2, 353–431 (1974)

    Google Scholar 

  28. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329 (1980)

    Article  Google Scholar 

  29. Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines materials? Z. Ver. Dtsch. Ing. 44, 1524–1530 (1900)

    Google Scholar 

  30. Cuntze, R.: Comparison between experimental and theoretical results using Cuntze’s “failure mode concept” model for composites under triaxial loadings—part B of the second world-wide failure exercise. J. Compos. Mater. 47, 893–924 (2013)

    Article  Google Scholar 

  31. Puck, A.: Festigkeitsberechnung an Glasfaser/Kunststoff-Laminaten bei zusammengesetzter Beanspruchung. Kunststoffe 59, 780–787 (1969)

    Google Scholar 

  32. Puck, A.: GFK-Drehrohrfedern sollen höchstbeanspruchte Stahlfedern ersetzen. Kunststoffe 80, 1380–1384 (1990)

    Google Scholar 

  33. Puck, A.: Ein Bruchkriterium gibt die Richtung an. Kunststoffe 82, 607–610 (1992)

    Google Scholar 

  34. Puck, A., Kopp, J., Knops, M.: Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos. Sci. Technol. 62, 371–378 (2002)

    Article  Google Scholar 

  35. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

  36. Puck, A., Mannigel, M.: Physically based non-linear stress–strain relations for the inter-fibre fracture analysis of FRP laminates. Compos. Sci. Technol. 67, 1955–1964 (2007)

    Article  Google Scholar 

  37. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data. Compos. Sci. Technol. 62, 1489–1514 (2002)

    Article  Google Scholar 

  38. Hinton, M.J., Kaddour, A.S., Soden, P.D.: Evaluation of failure prediction in composite laminates: background to “part B” of the exercise. Compos. Sci. Technol. 62, 1481–1488 (2002)

    Article  Google Scholar 

  39. Hinton, M.J., Soden, P.D.: Predicting failure in composite laminates: the background to the exercise. Compos. Sci. Technol. 58, 1001–1010 (1998)

    Article  Google Scholar 

  40. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58, 1011–1022 (1998)

    Article  Google Scholar 

  41. Kaddour, A.S., Hinton, M.J.: Maturity of 3D failure criteria for fibre-reinforced composites: comparison between theories and experiments: part B of WWFE-II. J. Compos. Mater. 47, 925–966 (2013)

    Article  Google Scholar 

  42. Hinton, M., Kaddour, A.: The background to part B of the second world-wide failure exercise: evaluation of theories for predicting failure in polymer composite laminates under three-dimensional states of stress. J. Compos. Mater. 47, 643–652 (2013)

    Article  Google Scholar 

  43. Hinton, M., Kaddour, A.: Triaxial test results for fibre reinforced composites: the second world-wide failure exercise benchmark data. J. Compos. Mater. 47, 925–966 (2013)

    Article  Google Scholar 

  44. Puck, A.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)

    Article  Google Scholar 

  45. Zinoviev, P.A., Lebedeva, O.V., Tairova, L.P.: A coupled analysis of experimental and theoretical results on the deformation and failure of composite laminates under a state of plane stress. Compos. Sci. Technol. 62, 1711–1723 (2002)

    Article  Google Scholar 

  46. Zinoviev, P.: The strength of multilayered composites under a plane-stress state. Compos. Sci. Technol. 58, 1209–1223 (1998)

    Article  Google Scholar 

  47. Cuntze, R.G., Freund, A.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos. Sci. Technol. 64, 343–377 (2004)

    Article  Google Scholar 

  48. Soden, P.D., Kaddour, A.S., Hinton, M.J.: Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos. Sci. Technol. 64, 589–604 (2004)

    Article  Google Scholar 

  49. Pinho, S., Vyas, G., Robinson, P.: Material and structural response of polymer-matrix fibre-reinforced composites: part B. J. Compos. Mater. 47, 679–696 (2013)

    Article  Google Scholar 

  50. Pinho, S., Darvizeh, R., Robinson, P., Schuecker, C., Camanho, P.: Material and structural response of polymer-matrix fibre-reinforced composites. J. Compos. Mater. 46, 2313–2341 (2012)

    Article  Google Scholar 

  51. Carrere, N., Laurin, F., Maire, J.-F.: Micromechanical-based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures. J. Compos. Mater. 46, 2389–2415 (2012)

    Article  Google Scholar 

  52. Carrere, N., Laurin, F., Maire, J.-F.: Micromechanical-based hybrid mesoscopic three-dimensional approach for non-linear progressive failure analysis of composite structures—part B: comparison with experimental data. J. Compos. Mater. 47, 743–762 (2012)

    Article  Google Scholar 

  53. Matthias Deuschle, H., Kroplin, B.-H.: Finite element implementation of Puck’s failure theory for fibre-reinforced composites under three-dimensional stress. J. Compos. Mater. 46, 2485–2513 (2012)

    Article  Google Scholar 

  54. Deuschle, H.M., Puck, A.: Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress: comparison with experimental results. J. Compos. Mater. 47, 827–846 (2013)

    Article  Google Scholar 

  55. Kaddour, A., Hinton, M., Smith, P., Li, S.: The background to the third world-wide failure exercise. J. Compos. Mater. 47, 2417–2426 (2013)

    Article  Google Scholar 

  56. Huang, Y., **, C., Ha, S.K.: Strength prediction of triaxially loaded composites using a progressive damage model based on micromechanics of failure. J. Compos. Mater. 47, 777–792 (2013)

    Article  Google Scholar 

  57. Zhang, D., Xu, L., Ye, J.: Prediction of failure envelopes and stress–strain curves of fiber composite laminates under triaxial loads: comparison with experimental results. J. Compos. Mater. 47, 763–776 (2013)

    Article  Google Scholar 

  58. Tessmer, J.: Theoretische und algorithmische Beitraege zur Berechnung von Faserverbundschalen. Ph.D. Thesis, University of Hannover (2000)

    Google Scholar 

  59. Juhasz, T.: Ein neues physikalisch basiertes Versagenskriterium für schwach 3D-verstärkte Faserverbundlaminate. Ph.D. Thesis, University Carolo-Wilhelmina Braunschweig (2003)

    Google Scholar 

  60. Axelrad, D.: Micromechanics of Solids. Elsevier Scientific, Amsterdam (1978)

    Google Scholar 

  61. Huang, Z.M., Ramakrishna, S.: Micromechanical modeling approaches for the stiffness and strength of knitted fabric composites: a review and comparative study. Compos. Part A Appl. Sci. Manuf. 31, 479–501 (2000)

    Article  Google Scholar 

  62. Kuksenko, V.S., Tamuzs, V.P.: Fracture Micromechanics of Polymer Materials. Springer, Dordrecht (1981)

    Book  Google Scholar 

  63. Stellbrink, K.: Micromechanics of Composites: Composite Properties of Fibre and Matrix Constituents. Carl Hanser Verlag, Munich (1996)

    Google Scholar 

  64. Voyiadjis, G.Z., Deliktas, B.: A coupled anisotropic damage model for the inelastic response of composite materials. Comput. Meth. Appl. Mech. Eng. 183, 159–199 (2000)

    Article  Google Scholar 

  65. Wisnom, M.R.: Size effects in the testing of fibre-composite materials. Compos. Sci. Technol. 59, 1937–1957 (1999)

    Article  Google Scholar 

  66. Flaggs, D.L., Kural, M.H.: Experimental determination of the in-situ transverse lamina strength in graphite/epoxy laminates. J. Compos. Mater. 16, 103–116 (1982)

    Article  Google Scholar 

  67. Ogin, S.L., Smith, P.A.: Fast fracture and fatigue growth of transverse ply cracks in composite laminates. Scr. Metall. 19, 779–784 (1985)

    Article  Google Scholar 

  68. Parvizi, A., Garrett, K.W., Bailey, J.E.: Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13, 195–201 (1978)

    Article  Google Scholar 

  69. Nairn, J., Hu, S.: The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int. J. Fract. 57, 1–24 (1992)

    Article  Google Scholar 

  70. Nairn, J.A., Hu, S.: The formation and effect of outer-ply microcracks in cross-ply laminates: a variational approach. Eng. Fract. Mech. 41, 203–221 (1992)

    Article  Google Scholar 

  71. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 3rd edn. Taylor & Francis Group, Boca Raton (2005)

    Google Scholar 

  72. Groos, D.: Bruchmechanik. Springer, Berlin (2007)

    Google Scholar 

  73. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379 (1968)

    Article  Google Scholar 

  74. Rice, J.R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98 (1988)

    Article  Google Scholar 

  75. Dowling, N.E.: Mechanical Behavior of Materials. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  76. Doudican, B.M., Zand, B., Amaya, P., Butalia, T.S., Wolfe, W.E., Schoeppner, G.A.: Strain energy based failure criterion: comparison of numerical predictions and experimental observations for symmetric composite laminates subjected to triaxial loading. J. Compos. Mater. 47, 847–866 (2013)

    Article  Google Scholar 

  77. Mueller, W.M., Moosburger-Will, J., Sause, M.G.R., Horn, S.: Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. J. Eur. Ceram. Soc. 33, 441–451 (2013)

    Article  Google Scholar 

  78. Jäger, J., Sause, M.G.R., Burkert, F., Moosburger-Will, J., Greisel, M., Horn, S.: Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin. Compos. Part A Appl. Sci. Manuf. 71, 157–167 (2015)

    Article  Google Scholar 

  79. Kaddour, A., Hinton, M., Smith, P., Li, S.: A comparison between the predictive capability of matrix cracking, damage and failure criteria for fibre reinforced composite laminates: part A of the third world-wide failure exercise. J. Compos. Mater. 47, 2749–2779 (2013)

    Article  Google Scholar 

  80. Chamis, C.C., Abdi, F., Garg, M., Minnetyan, L., Baid, H., Huang, D., Housner, J., Talagani, F.: Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test cases. J. Compos. Mater. 47, 2695–2712 (2013)

    Article  Google Scholar 

  81. Laurin, F., Carrere, N., Huchette, C., Maire, J.-F.: A multiscale hybrid approach for damage and final failure predictions of composite structures. J. Compos. Mater. 47, 2713–2747 (2013)

    Article  Google Scholar 

  82. Daghia, F., Ladeveze, P.: Identification and validation of an enhanced mesomodel for laminated composites within the WWFE-III. J. Compos. Mater. 47, 2675–2693 (2013)

    Article  Google Scholar 

  83. Flatscher, T., Schuecker, C., Pettermann, H.: A constitutive ply model for stiffness degradation and plastic strain accumulation: its application to the Third World Wide Failure Exercise (part A). J. Compos. Mater. 47, 2575–2593 (2013)

    Article  Google Scholar 

  84. Pinho, S., Vyas, G., Robinson, P.: Response and damage propagation of polymer-matrix fibre-reinforced composites: predictions for WWFE-III part A. J. Compos. Mater. 47, 2595–2612 (2013)

    Article  Google Scholar 

  85. Sapozhnikov, S.B., Cheremnykh, S.I.: The strength of fibre reinforced polymer under a complex loading. J. Compos. Mater. 47, 2525–2552 (2013)

    Article  Google Scholar 

  86. Forghani, A., Zobeiry, N., Poursartip, A., Vaziri, R.: A structural modelling framework for prediction of damage development and failure of composite laminates. J. Compos. Mater. 47, 2553–2573 (2013)

    Article  Google Scholar 

  87. Singh, C.V., Talreja, R.: A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks. J. Compos. Mater. 47, 2475–2501 (2012)

    Article  Google Scholar 

  88. McCartney, L.: Derivations of energy-based modelling for ply cracking in general symmetric laminates. J. Compos. Mater. 47, 2641–2673 (2013)

    Article  Google Scholar 

  89. McCartney, L.: Energy methods for modelling damage in laminates. J. Compos. Mater. 47, 2613–2640 (2012)

    Article  Google Scholar 

  90. Gorbatikh, L., Ivanov, D., Lomov, S., Verpoest, I.: On modelling of damage evolution in textile composites on meso-level via property degradation approach. Compos. Part A Appl. Sci. Manuf. 38, 2433–2442 (2007)

    Article  Google Scholar 

  91. Lomov, S., Ivanov, D., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., Hirosawa, S.: Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos. Sci. Technol. 67, 1870–1891 (2007)

    Article  Google Scholar 

  92. Whitcomb, J.D., Chapman, C.D., Tang, X.: Derivation of boundary conditions for micromechanics analyses of plain and satin weave composites. J. Compos. Mater. 34, 724–747 (2000)

    Article  Google Scholar 

  93. Mikhaluk, D.S., Truong, T.C., Borovkov, A.I., Lomov, S.V., Verpoest, I.: Experimental observations and finite element modelling of damage initiation and evolution in carbon/epoxy non-crimp fabric composites. Eng. Fract. Mech. 75, 2751–2766 (2008)

    Article  Google Scholar 

  94. Ivanov, D.S., Baudry, F., Van Den Broucke, B., Lomov, S.V., **e, H., Verpoest, I.: Failure analysis of triaxial braided composite. Compos. Sci. Technol. 69, 1372–1380 (2009)

    Article  Google Scholar 

  95. Lomov, S.V., Ivanov, D.S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., Molimard, J., Vautrin, A.: Full-field strain measurements for validation of meso-FE analysis of textile composites. Compos. Part A Appl. Sci. Manuf. 39, 1218–1231 (2008)

    Article  Google Scholar 

  96. Ivanov, S.G., Gorbatikh, L., Lomov, S.V.: Interlaminar fracture behaviour of textile composites with thermoplastic matrices. In: ECCM16—16th European Conference on Composite Materials, pp. 1–8. Sevilla, Spain (2014)

    Google Scholar 

  97. Deuschle, H.M.: 3D failure analysis of UD fibre reinforced composites: Puck’s theory within FEA. Ph.D. Thesis, University of Stuttgart (2010)

    Google Scholar 

  98. Edge, E.C.: Does transverse and shear loading affect the compression strength of unidirectional CFC? A reply to Dr Hart-Smith. Composites 25, 159–161 (1994)

    Article  Google Scholar 

  99. Hart-Smith, L.: Fibrous composite failure criteria-fact and fantasy. In: 7th International Conference of Composite Structures. Paisley, (1993)

    Google Scholar 

  100. Scott, A.E., Mavrogordato, M., Wright, P., Sinclair, I., Spearing, S.M.: In-situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71, 1471–1477 (2011)

    Article  Google Scholar 

  101. Scott, A.E., Sinclair, I., Spearing, S.M., Mavrogordato, M., Bunsell, A.R., Thionnet, A.: Comparison of the accumulation of fibre breaks occurring in a unidirectional carbon/epoxy composite identified in a multi-scale micro-mechanical model with that of experimental observations using high resolution computed tomography. In: Matériaux 2010, pp. 1–9. Nantes, France (2010)

    Google Scholar 

  102. Fuwa, M., Harris, B., Bunsell, A.R.: Acoustic emission during cyclic loading of carbon-fibre-reinforced plastics. J. Phys. D Appl. Phys. 8, 1460–1471 (2001)

    Article  Google Scholar 

  103. Scott, A.E., Sinclair, I., Spearing, S.M., Thionnet, A., Bunsell, A.R.: Damage accumulation in a carbon/epoxy composite: comparison between a multiscale model and computed tomography experimental results. Compos. Part A Appl. Sci. Manuf. 43, 1514–1522 (2012)

    Article  Google Scholar 

  104. Kaddour, A.S., Hinton, M.J., Soden, P.D.: A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64, 449–476 (2004)

    Article  Google Scholar 

  105. Ortwein, H.-P., Bohse, J., Trappe, V.: Untersuchung der Mikrorissbildung in Faserkunststoffverbunden mittels Röntgen- refraktions- und Schallemissionsmessung. In: 18. Kolloquium Schallemission, pp. 1–7. Wetzlar, Germany (2011)

    Google Scholar 

  106. Trappe, V., Günzel, S., Hickmann, S.: Non-destructive evaluation of micro cracking in short fibre reinforced thermoplastics with X-ray-refraction. In: ICCM 17—17th International Conference on Composite Material. Edinburgh (2009)

    Google Scholar 

  107. Trappe, V., Hickmann, S., Sturm, H.: Bestimmung des Zwischenfaserbruchversagens in textilfaserverstärkten Glasfaserkunststoff mittels Refraktionstopographie. Mater. Test. 50, 615–622 (2008)

    Article  Google Scholar 

  108. Metzkes, K., Trappe, V.: Damage Evolution in short fibre reinforced polyamide caused by biaxial loading. In: ECCM16—16th European Conference on Composite Materials, pp. 1–8. Sevilla, Spain (2014)

    Google Scholar 

  109. Scott, A.E., Sinclair, I., Spearing, S.M., Mavrogordato, M.N., Hepples, W.: Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Compos. Sci. Technol. 90, 147–153 (2014)

    Article  Google Scholar 

  110. Ramesh, K.T.: High strain rate and impact experiments. In: Springer Handbook of Experimental Solid Mechanics, pp. 1–31. Springer, Berlin (2008)

    Google Scholar 

  111. Horoschenkoff, A.: Beitrag zur Charakterisierung des nichtlinear thermoviskoelastischen Kriechverhaltens von Faserverbundwerkstoffen. Ph.D. Thesis, Technical University of Munich (1995)

    Google Scholar 

  112. Sakai, T., Somiya, S.: Analysis of creep behavior in thermoplastics based on visco-elastic theory. Mech. Time-Dependent Mater. 15, 293–308 (2011)

    Article  Google Scholar 

  113. Somiya, S.: Creep behavior of a carbon-fiber-reinforced thermoplastic polyimide resin. J. Thermoplast. Compos. Mater. 7, 91–99 (1994)

    Article  Google Scholar 

  114. Sakai, T., Somiya, S.: Analysis of creep behavior in thermoplastic based on visco-elastic theory. In: Proceedings of the SEM Annual Conference. Albuquerque, New Mexico (2009)

    Google Scholar 

  115. Guedes, R.M.: Creep and fatigue lifetime prediction of polymer matrix composites based on simple cumulative damage laws. Compos. Part A Appl. Sci. Manuf. 39, 1716–1725 (2008)

    Article  Google Scholar 

  116. Guedes, R.M.: Relationship between lifetime under creep and constant stress rate for polymer-matrix composites. Compos. Sci. Technol. 69, 1200–1205 (2009)

    Article  Google Scholar 

  117. Reiner, M., Weissenberg, K.: A thermodynamic theory of the strength of the materials. Rheol. Leafl. 10, 12–20 (1939)

    Google Scholar 

  118. Miner, M.: Cumulative damage in fatigue. J. Appl. Mech. 12, 159–164 (1945)

    Google Scholar 

  119. Christensen, R.: A physically based cumulative damage formalism. Int. J. Fatigue 30, 595–602 (2008)

    Article  Google Scholar 

  120. Saulsberry, R.L., Greene, N.J., Hernandez, L.: Stress rupture nondestructive evaluation of composite overwrapped pressure vessels. In: Lulla, K. (ed.) 2011 Biennial Research and Technology Development Report, pp. 287–289. (2011)

    Google Scholar 

  121. Chang, J.B.: Implementation guidelines for ANSI/AIAA S-081: space systems composite overwrapped pressure vessels. In: Aerospace Report No. TR-2003(8504)-1, AD A413531, p. 83. (2003)

    Google Scholar 

  122. Miyano, Y., Nakada, M., Sekine, N.: Accelerated testing for long-term durability of FRP laminates for marine use. J. Compos. Mater. 39, 5–20 (2005)

    Article  Google Scholar 

  123. Miyano, Y., Nakada, M., Nishigaki, K.: Prediction of long-term fatigue life of quasi-isotropic CFRP laminates for aircraft use. Int. J. Fatigue 28, 1217–1225 (2006)

    Article  Google Scholar 

  124. Nakada, M., Okuya, T., Miyano, Y.: Statistical prediction of tensile creep failure time for unidirectional CFRP. Adv. Compos. Mater. 23, 451–460 (2014)

    Article  Google Scholar 

  125. Wöhler, A.: Über die Festigkeits-Versuche mit Eisen und Stahl. Z. Bauwesen 1–3, 74–106 (1870)

    Google Scholar 

  126. Haibach, E.: Betriebsfestigkeit. Springer, Berlin (2006)

    Google Scholar 

  127. Palmgren, A.: Die Lebensdauer von Kugellagern. Z. Ver. Dtsch. Ing. 68, 339–341 (1924)

    Google Scholar 

  128. Degrieck, J., Van Paepegem, W.: Fatigue damage modeling of fibre-reinforced composite materials: review. Appl. Mech. Rev. 54, 279 (2001)

    Article  Google Scholar 

  129. Hwang, W., Han, K.S.: Cumulative damage models and multi-stress fatigue life prediction. J. Compos. Mater. 20, 125–153 (1986)

    Article  Google Scholar 

  130. Barnard, P.M., Butler, R.J., Curtis, P.T.: Composite Structures 3. Springer, Dordrecht (1985)

    Google Scholar 

  131. Farrow, I.R.: Damage accumulation and degradation of composite laminates under aircraft service loading: assessment and prediction. Ph.D. Thesis, Cranfield Institute of Technology (1989)

    Google Scholar 

  132. Bingham, A.H., Ek, C.W.: Acoustic emission testing of aerial devices and associated equipment used in the utility industries, Ausgabe 1139. ASTM International (1992)

    Google Scholar 

  133. Sendeckyj, G.P.: Life prediction for resin-matrix composite materials. In: Reifsnider, K.L. (ed.) Fatigue of Composite Materials. Elsevier B.V., Amsterdam (1990)

    Google Scholar 

  134. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  135. Ellyin, F., El-Kadi, H.: A fatigue failure criterion for fiber reinforced composite laminae. Compos. Struct. 15, 61–74 (1990)

    Article  Google Scholar 

  136. Reifsnider, K., Gao, Z.: A micromechanics model for composites under fatigue loading. Int. J. Fatigue 13, 149–156 (1991)

    Article  Google Scholar 

  137. Wu, C.M.L.: Thermal and mechanical fatigue analysis of CFRP laminates. Compos. Struct. 25, 339–344 (1993)

    Article  Google Scholar 

  138. Jen, M.: Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: formulation. Int. J. Fatigue 20, 617–629 (1998)

    Article  Google Scholar 

  139. Jen, M.: Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: experimental. Int. J. Fatigue 20, 605–615 (1998)

    Article  Google Scholar 

  140. Philippidis, T.P., Vassilopoulos, A.P.: Fatigue strength prediction under multiaxial stress. J. Compos. Mater. 33, 1578–1599 (1999)

    Article  Google Scholar 

  141. Castillo, E., Fernández-Canteli, A., Hadi, A.S.: On fitting a fatigue model to data. Int. J. Fatigue 21, 97–106 (1999)

    Article  Google Scholar 

  142. Hwang, W., Han, K.S.: Fatigue of composites–fatigue modulus concept and life prediction. J. Compos. Mater. 20, 154–165 (1986)

    Article  Google Scholar 

  143. Sidoroff, F., Subagio, B.: Fatigue damage modelling of composite materials from bending tests. In: Sixth International Conference on Composite Materials (ICCM-VI) & Second European Conference on Composite Materials (ECCM-II), vol. 4, pp. 4.32–4.39. London (1987)

    Google Scholar 

  144. Van Paepegem, W., Degrieck, J.: Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites. Compos. Struct. 51, 1–8 (2001)

    Article  Google Scholar 

  145. Yang, J.N., Lee, L.J., Sheu, D.Y.: Modulus reduction and fatigue damage of matrix dominated composite laminates. Compos. Struct. 21, 91–100 (1992)

    Article  Google Scholar 

  146. Lee, L.J., Fu, K.E., Yang, J.N.: Prediction of fatigue damage and life for composite laminates under service loading spectra. Compos. Sci. Technol. 56, 635–648 (1996)

    Article  Google Scholar 

  147. Brøndsted, P., Lilholt, H., Andersen, S.I.: Fatigue damage prediction by measurements of the stiffness degradation in polymer matrix composites. In: 8th International Spring Meeting of ICFC. Paris, France (1997)

    Google Scholar 

  148. Whitworth, H.A.: A stiffness degradation model for composite laminates under fatigue loading. Compos. Struct. 40, 95–101 (1997)

    Article  Google Scholar 

  149. Chou, P., Croman, R.: Degradation and sudden-death models of fatigue of graphite/epoxy composites. In: Composite Materials: Testing and Design (5th Conf) ASTM STP, (1979)

    Google Scholar 

  150. Halpin, C., Jerina, K., Johnson, T.: Characterization of composites for the purpose of reliability evaluation. In: Analysis of the Test Methods for High Modulus Fibers and Composites: A Symposium Presented at a Meeting of Committee D-30 on High Modulus Fibers and Their Composites. (1973)

    Google Scholar 

  151. Yang, J., Jones, D.: Load sequence effects on the fatigue of unnotched composite materials. In: Fatigue of Fibrous Composite Materials, pp. 213–232. ASTM STP, (1981)

    Google Scholar 

  152. Daniel, I.M., Charewicz, A.: Fatigue damage mechanisms and residual properties of graphite/epoxy laminates. Eng. Fract. Mech. 25, 793–808 (1986)

    Article  Google Scholar 

  153. Rotem, A.: Fatigue and residual strength of composite laminates. Eng. Fract. Mech. 25, 819–827 (1986)

    Article  Google Scholar 

  154. Schaff, J.R., Davidson, B.D.: Life prediction methodology for composite structures. Part II—spectrum fatigue. J. Compos. Mater. 31, 158–181 (1997)

    Article  Google Scholar 

  155. Caprino, G.: Predicting fatigue life of composite laminates subjected to tension–tension fatigue. J. Compos. Mater. 34, 1334–1355 (2000)

    Article  Google Scholar 

  156. Yao, W.X., Himmel, N.: A new cumulative fatigue damage model for fibre-reinforced plastics. Compos. Sci. Technol. 60, 59–64 (2000)

    Article  Google Scholar 

  157. Biner, S.B., Yuhas, V.C.: Growth of short fatigue cracks at notches in woven fiber glass reinforced polymeric composites. J. Eng. Mater. Technol. 111, 363 (1989)

    Article  Google Scholar 

  158. Bergmann, H.W., Prinz, R.: Fatigue life estimation of graphite/epoxy laminates under consideration of delamination growth. Int. J. Numer. Meth. Eng. 27, 323–341 (1989)

    Article  Google Scholar 

  159. Dahlen, C., Springer, G.S.: Delamination growth in composites under cyclic loads. J. Compos. Mater. 28, 732–781 (1994)

    Google Scholar 

  160. Bartley-Cho, J., Gyu Lim, S., Hahn, H.T., Shyprykevich, P.: Damage accumulation in quasi-isotropic graphite/epoxy laminates under constant-amplitude fatigue and block loading. Compos. Sci. Technol. 58, 1535–1547 (1998)

    Article  Google Scholar 

  161. Bucinell, R.B.: Development of a stochastic free edge delamination model for laminated composite materials subjected to constant amplitude fatigue loading. J. Compos. Mater. 32, 1138–1156 (1998)

    Article  Google Scholar 

  162. Schön, J.: A model of fatigue delamination in composites. Compos. Sci. Technol. 60, 553–558 (2000)

    Article  Google Scholar 

  163. Highsmith, A., Reifsnider, K.: Stiffness-reduction mechanisms in composite laminates. In: Damage in Composite Materials, pp. 103–117. ASTM International, Philadelphia, (1982)

    Google Scholar 

  164. Reifsnider, K.L.: The critical element model: a modeling philosophy. Eng. Fract. Mech. 25, 739–749 (1986)

    Article  Google Scholar 

  165. Subramanian, S., Reifsnider, K.L., Stinchcomb, W.W.: A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase. Int. J. Fatigue 17, 343–351 (1995)

    Article  Google Scholar 

  166. Talreja, R.: Stiffness properties of composite laminates with matrix cracking and interior delamination. Eng. Fract. Mech. 25, 751–762 (1986)

    Article  Google Scholar 

  167. Ogin, S.L., Smith, P.A., Beaumont, P.W.R.: Matrix cracking and stiffness reduction during the fatigue of a (0/90)s GFRP laminate. Compos. Sci. Technol. 22, 23–31 (1985)

    Article  Google Scholar 

  168. Spearing, S.M., Beaumont, P.W.R., Ashby, M.F.: Fatigue damage mechanics of composite materials. II: a damage growth model. Compos. Sci. Technol. 44, 169–177 (1992)

    Article  Google Scholar 

  169. Spearing, S.M., Beaumont, P.W.R.: Fatigue damage mechanics of composite materials. I: experimental measurement of damage and post-fatigue properties. Compos. Sci. Technol. 44, 159–168 (1992)

    Article  Google Scholar 

  170. Ladevèze, P.: A damage computational method for composite structures. Comput. Struct. 44, 79–87 (1992)

    Article  Google Scholar 

  171. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials. Part I: modeling. J. Compos. Mater. 34, 1056–1080 (2000)

    Article  Google Scholar 

  172. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials. Part II: material characterization and model verification. J. Compos. Mater. 34, 1081–1116 (2000)

    Article  Google Scholar 

  173. Reifsnider, K.: Fatigue of Composite Materials. Elsevier, Amsterdam (1990)

    Google Scholar 

  174. Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T., Siviour, C.R.: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30, 725–775 (2004)

    Article  Google Scholar 

  175. Gama, B.A., Lopatnikov, S.L., Gillespie, J.W.: Hopkinson bar experimental technique: a critical review. Appl. Mech. Rev. 57, 223 (2004)

    Article  Google Scholar 

  176. Kawai, M., Saito, S.: Off-axis strength differential effects in unidirectional carbon/epoxy laminates at different strain rates and predictions of associated failure envelopes. Compos. Part A Appl. Sci. Manuf. 40, 1632–1649 (2009)

    Article  Google Scholar 

  177. Vogler, T.J., Kyriakides, S.: Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear. Part I: experiments. Int. J. Plast. 15, 783–806 (1999)

    Article  Google Scholar 

  178. Hsiao, H.M., Daniel, I.M., Cordes, R.D.: Strain rate effects on the transverse compressive and shear behavior of unidirectional composites. J. Compos. Mater. 33, 1620–1642 (1999)

    Article  Google Scholar 

  179. Hosur, M.V., Alexander, J., Vaidya, U.K., Jeelani, S.: High strain rate compression response of carbon/epoxy laminate composites. Compos. Struct. 52, 405–417 (2001)

    Article  Google Scholar 

  180. Tsai, J.-L., Sun, C.T.: Strain rate effect on in-plane shear strength of unidirectional polymeric composites. Compos. Sci. Technol. 65, 1941–1947 (2005)

    Article  Google Scholar 

  181. Koerber, H., Xavier, J., Camanho, P.P.: High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech. Mater. 42, 1004–1019 (2010)

    Article  Google Scholar 

  182. Körber, H., Camanho, P.P.: Characterisation of unidirectional carbon-epoxy IM7-8552 in longitudinal compression under high strain rates. In: DYMAT 2009—9th International Conferences on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, pp. 185–191. EDP Sciences, Les Ulis, France (2009)

    Google Scholar 

  183. Koerber, H., Vogler, M., Kuhn, P., Camanho, P.P.: Experimental characterisation and modelling of non-linear stress–strain behaviour and strain rate effects for unidirectional carbon-epoxy. In: ECCM16—16th European Conference on Composite Materials, pp. 1–8. Sevilla, Spain (2014)

    Google Scholar 

  184. Lee, D., Tippur, H., Bogert, P.: Quasi-static and dynamic fracture of graphite/epoxy composites: an optical study of loading-rate effects. Compos. Part B Eng. 41, 462–474 (2010)

    Article  Google Scholar 

  185. Gilat, A., Schmidt, T.E., Walker, A.L.: Full field strain measurement in compression and tensile split hopkinson bar experiments. Exp. Mech. 49, 291–302 (2008)

    Article  Google Scholar 

  186. Ciampa, F., Meo, M., Barbieri, E.: Impact localization in composite structures of arbitrary cross section. Struct. Health Monit. 11(6), 643–655 (2012)

    Article  Google Scholar 

  187. Ciampa, F., Meo, M.: Impact detection in anisotropic materials using a time reversal approach. Struct. Health Monit. 11, 43–49 (2011)

    Article  Google Scholar 

  188. Gorman, M.R., Ziola, S.M.: Hypervelocity impact (HVI). WLE Small-Scale Fiberglass Panel Flat Target C-2, vol. 4. (2007)

    Google Scholar 

  189. Gorman, M.R., Ziola, S.M.: Hypervelocity impact (HVI). WLE High Fidelity Specimen Fg(RCC)-2, vol. 6. (2007)

    Google Scholar 

  190. Bleier, A.: Prüfverfahren zur Bestimmung exakter Werkstoffkennwerte einer unidirektionalen Schicht unter besonderer Berücksichtigung physikalischer Nichtlinearitäten. Ph.D. Thesis, Technical University Darmstadt (2011)

    Google Scholar 

  191. Basan, R.: Untersuchung der intralaminaren Schubeigenschaften von Faserverbundwerkstoffen mit Epoxidharzmatrix unter Berücksichtigung nichtlinearer Effekte. Ph.D. Thesis, Technical University Berlin (2011)

    Google Scholar 

  192. Blackman, B.R.K., Brunner, A.J., Williams, J.G.: Mode II fracture testing of composites: a new look at an old problem. Eng. Fract. Mech. 73, 2443–2455 (2006)

    Article  Google Scholar 

  193. Lomov, S.V., Boisse, P., Deluycker, E., Morestin, F., Vanclooster, K., Vandepitte, D., Verpoest, I., Willems, A.: Full-field strain measurements in textile deformability studies. Compos. Part A Appl. Sci. Manuf. 39, 1232–1244 (2008)

    Article  Google Scholar 

  194. Pierron, F.: Application of full-field measurement techniques to composite materials and structures. Compos. Part A Appl. Sci. Manuf. 39, 1193 (2008)

    Article  Google Scholar 

  195. Müller, B.R., Hentschel, M.P., Harbich, K.-W., Lange, A., Schors, J.: X-ray refraction topography for non-destructive evaluation of advanced materials. In: 15th World Conference on NDT, Roma, Italy (2000)

    Google Scholar 

  196. Baensch, F., Zauner, M., Sanabria, S.J., Sause, M.G.R., Pinzer, B.R., Brunner, A.J., Stampanoni, M., Niemz, P.: Damage evolution in wood: synchrotron radiation micro-computed tomography (SRμCT) as a complementary tool for interpreting acoustic emission (AE) behavior. Holzforschung 69 (2015)

    Google Scholar 

  197. Scott, A.E., Hepples, W., Kalantzis, N., Wright, P., Mavrogordato, M.N., Sinclair, I., Spearing, S.M.: High resolution damage detection of loaded carbon/epoxy laminates using synchrotron radiation computed tomography. In: ICCM-18 18th International Conference on Composite Materials, pp. 1–6. ICC Jeju, Korea (2011)

    Google Scholar 

  198. Patel, A.J., Sottos, N.R., Wetzel, E.D., White, S.R.: Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 41, 360–368 (2010)

    Article  Google Scholar 

  199. Bagheri, Z.S., Tavakkoli Avval, P., Bougherara, H., Aziz, M.S.R., Schemitsch, E.H., Zdero, R.: Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. J. Biomech. Eng. 136, 091002 (2014)

    Article  Google Scholar 

  200. Abello, L.S., Marco, Y., Le Saux, V., Robert, G., Charrier, P.: Fast prediction of the fatigue behavior of short fiber reinforced thermoplastics from heat build-up measurements. Procedia Eng. 66, 737–745 (2013)

    Article  Google Scholar 

  201. Gornet, L., Wesphal, O., Burtin, C., Bailleul, J.-L., Rozycki, P., Stainier, L.: Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations. Procedia Eng. 66, 697–704 (2013)

    Article  Google Scholar 

  202. Francis, D., Tatam, R.P., Groves, R.M.: Shearography technology and applications: a review. Meas. Sci. Technol. 21, 102001 (2010)

    Article  Google Scholar 

  203. Hung, Y.Y., Liang, C.Y.: Image-shearing camera for direct measurement of surface strains. Appl. Opt. 18, 1046–51 (1979)

    Article  Google Scholar 

  204. Hung, Y.Y.: Shearography for non-destructive evaluation of composite structures. Opt. Lasers Eng. 24, 161–182 (1996)

    Article  Google Scholar 

  205. Hung, Y.Y.: Shearography: a new optical method for strain measurement and nondestructive testing. Opt. Eng. 21, 213391 (1982)

    Article  Google Scholar 

  206. Wang, W.-C., Su, C.-W., Liu, P.-W.: Full-field non-destructive analysis of composite plates. Compos. Part A Appl. Sci. Manuf. 39, 1302–1310 (2008)

    Article  Google Scholar 

  207. Gryzagoridis, J., Findeis, D.: Benchmarking shearographic NDT for composites. Insight non-destructive test. Cond. Monit. 50, 249–252 (2008)

    Google Scholar 

  208. De Angelis, G., Meo, M., Almond, D.P., Pickering, S.G., Angioni, S.L.: A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization. NDT E Int. 45, 91–96 (2012)

    Article  Google Scholar 

  209. Pezzoni, R., Krupka, R.: Laser-shearography for non-destructive testing of large-area composite helicopter structures. In: 15th World Conference on NDT, Roma, Italy (2000)

    Google Scholar 

  210. Leonard, K.R., Malyarenko, E.V., Hinders, M.K.: Ultrasonic Lamb wave tomography. Inverse Probl. 18, 1795–1808 (2002)

    Article  Google Scholar 

  211. Hay, T.R., Royer, R.L., Gao, H., Zhao, X., Rose, J.L.: A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection. Smart Mater. Struct. 15, 946–951 (2006)

    Article  Google Scholar 

  212. Jansen, D.P., Hutchins, D.A., Mottram, J.T.: Lamb wave tomography of advanced composite laminates containing damage. Ultrasonics 32, 83–90 (1994)

    Article  Google Scholar 

  213. Prasad, S.M., Balasubramaniam, K., Krishnamurthy, C.: V: Structural health monitoring of composite structures using Lamb wave tomography. Smart Mater. Struct. 13, N73–N79 (2004)

    Article  Google Scholar 

  214. Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386 (2004)

    Article  Google Scholar 

  215. Solodov, I., Busse, G.: Nonlinear air-coupled emission: the signature to reveal and image microdamage in solid materials. Appl. Phys. Lett. 91, 251910 (2007)

    Article  Google Scholar 

  216. Krohn, N., Stoessel, R., Busse, G.: Acoustic non-linearity for defect selective imaging. Ultrasonics 40, 633–637 (2002)

    Article  Google Scholar 

  217. Pappas, Y.Z., Kostopoulos, V.: Toughness characterization and acoustic emission monitoring of a 2-D carbon/carbon composite. Eng. Fract. Mech. 68, 1557–1573 (2001)

    Article  Google Scholar 

  218. Maire, E., Carmona, V., Courbon, J., Ludwig, W.: Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater. 55, 6806–6815 (2007)

    Article  Google Scholar 

  219. Bohse, J., Kroh, G.: Micromechanics and acoustic emission analysis of the failure process of thermoplastic composites. J. Mater. Sci. 27, 298–306 (1992)

    Article  Google Scholar 

  220. Haselbach, W., Lauke, B.: Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos. Sci. Technol. 63, 2155–2162 (2003)

    Article  Google Scholar 

  221. Bohse, J.: Damage analysis of polymer matrix composites by acoustic emission testing. In: EWGAE 2004—26th European Conference on Acoustic Emission Testing, pp. 339–348. Berlin, Germany (2004)

    Google Scholar 

  222. Cuadra, J., Vanniamparambil, P.A., Hazeli, K., Bartoli, I., Kontsos, A.: Damage quantification in polymer composites using a hybrid NDT approach. Compos. Sci. Technol. 83, 11–21 (2013)

    Article  Google Scholar 

  223. Unnthorsson, R., Runarsson, T., Jonsson, M.: Monitoring the evolution of individual AE sources in cyclically loaded FRP composites. J. Acoust. Emiss. 25, 253–259 (2007)

    Google Scholar 

  224. Surgeon, M., Vanswijgenhoven, E., Wevers, M., Van Der Biest, O.: Acoustic emission during tensile testing of SiC-fibre-reinforced BMAS glass-ceramic composites. Compos. Part A Appl. Sci. Manuf. 28, 473–480 (1997)

    Article  Google Scholar 

  225. Ramirez-Jimenez, C.R., Papadakis, N., Reynolds, N., Gan, T.H., Purnell, P., Pharaoh, M.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  226. Narisawa, I., Oba, H.: An evaluation of acoustic emission from fibre-reinforced composites. J. Mater. Sci. 19, 1777–1786 (1984)

    Article  Google Scholar 

  227. Huguet, S., Godin, N., Gaertner, R., Salmon, L., Villard, D.: Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos. Sci. Technol. 62, 1433–1444 (2002)

    Article  Google Scholar 

  228. Anastassopoulos, A.A., Philippidis, T.P.: Clustering methodology for the evaluation of acoustic emission from composites. J. Acoust. Emiss. 13, 11–21 (1995)

    Google Scholar 

  229. Giordano, M., Calabro, A., Esposito, C., D’Amore, A., Nicolais, L.: An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos. Sci. Technol. 58, 1923–1928 (1998)

    Article  Google Scholar 

  230. Scholey, J.J., Wilcox, P.D., Wisnom, M.R., Friswell, M.I.: Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos. Part A Appl. Sci. Manuf. 41, 612–623 (2010)

    Article  Google Scholar 

  231. Waller, J.M., Nichols, C.T., Wentzel, D.J., Saulsberry, R.L., Thompson, D.O., Chimenti, D.E.: Use of modal acoustic emission to monitor damage progression in carbon fiber∕epoxy composites. In: AIP Conference Proceedings, pp. 919–926. San Diego, (2011)

    Google Scholar 

  232. Plöckl, M., Sause, M.G.R., Scharringhausen, J., Horn, S.: Failure analysis of nol-ring specimens by acoustic emission. In: 30th European Conference on Acoustic Emission, pp. 1–12. Granada, Spain (2012)

    Google Scholar 

  233. Sause, M.G.R., Müller, T., Horoschenkoff, A., Horn, S.: Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72, 167–174 (2012)

    Article  Google Scholar 

  234. Ono, K., Gallego, A.: Research and applications of AE on advanced composites. J Acoust. Emiss. 30, 180–229 (2012)

    Google Scholar 

  235. Anastassopoulos, A., Tsimogiannis, A., Kouroussis, D.: Unsupervised classification of acoustic emission sources from aerial man lift devices. In: 15th World Conference on NDT, Roma, Italy (2000)

    Google Scholar 

  236. Anastassopoulos, A.A., Kouroussis, D.A., Nikolaidis, V.N., Proust, A., Dutton, A.G., Blanch, M.J., Jones, L.E., Vionis, P., Lekou, D.J., van Delft, D.R. V, Joosse, P.A., Philippidis, T.P., Kossivas, T., Fernando, G.: Structural integrity evaluation of wind turbine blades using pattern recognition analysis on acoustic emission data. In: Proceedings of the 25th European Conference on Acoustic Emission Testing. Prague, Czech Republic (2002)

    Google Scholar 

  237. Grosse, C.U., Ohtsu, M.: Acoustic Emission Testing. Springer, Berlin (2008)

    Book  Google Scholar 

  238. Weihnacht, B., Schulze, E., Frankenstein, B.: Acoustic emission analysis in the dynamic fatigue testing of fiber composite components. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  239. Abraham, A.R.A., Johnson, K.L., Nichols, C.T., Saulsberry, R.L., Waller, J.M.: Use of statistical analysis of acoustic emission data on carbon-epoxy COPV materials-of-construction for enhanced felicity ratio onset determination—JSC-CN-26080. (2011)

    Google Scholar 

  240. Downs, K.S., Hamstad, M.A.: Acoustic emission from depressurization to detect/evaluate significance of impact damage to graphite/epoxy pressure vessels. J. Compos. Mater. 32, 258–307 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sause, M.G.R. (2016). Failure of Fiber-Reinforced Composites. In: In Situ Monitoring of Fiber-Reinforced Composites. Springer Series in Materials Science, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-319-30954-5_2

Download citation

Publish with us

Policies and ethics

Navigation