A Comparative Study Between Photovoltaic Pum** Systems Using a Permanent Magnet DC Motor and an Induction Motor

  • Conference paper
  • First Online:
Mediterranean Green Buildings & Renewable Energy

Abstract

The solar power source for pum** water is one of the most promising areas in photovoltaic (PV) applications. This chapter presents a comparative study of a PV pum** system driven by a permanent magnet DC motor and one driven by an AC motor. The studied system consists of a PV array, a DC–DC boost converter, an inverter, a motor–pump set, and a storage tank. In addition, we use a maximum power point tracking algorithm to improve the efficiency of the PV system. The comparison was carried out to define the characteristics and the performance of each system. Each subsystem is modeled to simulate the whole system in MATLAB/Simulink. The results obtained from the simulation of the system are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdourraziq S, El Bachtiri R (2013) Modeling of a photovoltaic pum** system using centrifugal pump and DC motor. Sustain Energy Buildings 2:1–6, mgf13s-002. Mediterranean Green Energy Forum 2013 (MGEF-13)

    Google Scholar 

  2. Moussi AT (2002) An improved efficiency permanent magnet brushless DC motor PV pum** system. Larhyss J No. 01, Mai 2002. http://dx.doi.org/10.1115/isec2005-76253

  3. Betka A, Attal A (2010) Optimization of a photovoltaic pum** system based on the optimal control theory. Solar Energy 84:1273–1283

    Article  Google Scholar 

  4. Nejib H, Moncef J (2009) Theoretical and experimental analysis of the behaviour of a photovoltaic pum** system. Solar Energy 83:1335–1344

    Article  Google Scholar 

  5. Elgendy MA, Zahawi B (2010) Comparison of directly connected and constant voltage controlled photovoltaic pum** systems. IEEE Trans Sustain Energy 1(3):184–192

    Article  Google Scholar 

  6. Corrêa TP, Seleme SI Jr (2012) Efficiency optimization in stand-alone photovoltaic pum** system. Renew Energy 41:220–226

    Article  Google Scholar 

  7. Davies JL, Malengret M (1992) Application of induction motor for solar water pum**, 0-7803-0835-2/92. In: AFRICON ‘92 Proceedings, Third AFRICON Conference, Ezulwini Valley

    Google Scholar 

  8. Badia A, Abderrezak G (2012) A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl Energy 91:395–404

    Article  Google Scholar 

  9. Kadri R, Andrei H (2012) Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions. Energy 42:57–67

    Article  Google Scholar 

  10. de Brito MAG, Luigi G (2013) Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Indus Electron 60(3):1156–1166

    Article  Google Scholar 

  11. Elgendy MA, Zahawi B (2012) Assessment of perturb and observe MPPT algorithm implementation techniques for PV pum** applications. IEEE Trans Sustain Energy 3(1):21–33

    Article  Google Scholar 

  12. Sarah A, Rachid EB (2012) A perturb and observe method using fuzzy logic control for PV pum** system. In: IEEE multimedia computing and systems (ICMCS’14), pp 1608–1612

    Google Scholar 

  13. Abdourraziq S, Bachtiri R (2014) A perturb and observe method using dual fuzzy logic control for resistive load. In: Recent advances in environmental science and biomedicine, ISBN: 978-960-474-391-9, pp 107–112

    Google Scholar 

  14. Elgendy MA, Zahawi B (2013) Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans Sustain Energy 4(1):108–117

    Article  Google Scholar 

  15. Abdourraziq S, El Bachtiri R (2014) A novel MPPT dual fuzzy logic applied to resistive load and PV pum** system. Int Rev Automat Control 7(4):446–452

    Google Scholar 

  16. Jraidi M, Hamrouni N, Cherif A, Dhouib A (2004) Modélisation et Simulation des Systèmes de Pompage Photovoltaıque avec de nouvelles stratégies de commande. JTEA, Hammamet, Tunisie

    Google Scholar 

  17. Benlarb K, Mokrani L (2004) A fuzzy global efficiency optimization of a photovoltaic water pum** system. Solar Energy 77:203–216

    Article  Google Scholar 

  18. Rekioua D, Rekioua T, Laporte B, Benmahammed K (2001) Design of a position sensor for torque ripple minimization of VSI fed self synchronous machine. Int J Electron 88(7):158

    Google Scholar 

  19. Arrouf M, Ghabrour S (2007) Modelling and simulation of a pum** system fed by photovoltaic generator within the Matlab/Simulink programming environment. ScienceDirect 209:23–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdourraziq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdourraziq, S., El Bachtiri, R. (2017). A Comparative Study Between Photovoltaic Pum** Systems Using a Permanent Magnet DC Motor and an Induction Motor. In: Sayigh, A. (eds) Mediterranean Green Buildings & Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-30746-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30746-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30745-9

  • Online ISBN: 978-3-319-30746-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation