Planet Occurrence: Doppler and Transit Surveys

Handbook of Exoplanets

Abstract

Prior to the 1990s, speculations about the occurrence of planets around other stars were based only on planet formation theory, observations of circumstellar disks, and the knowledge that at least one seemingly ordinary star had managed to make a variety of different planets. Since then, Doppler and transit surveys have revealed the population of planets around other Sun-like stars, especially those with orbital periods shorter than a few years. Over the last decade, these surveys have risen to new heights with Doppler spectrographs capable of 1 m s−1 precision and space telescopes capable of detecting the transits of Earth-sized planets. This article is a brief introductory review of the knowledge of planet occurrence that has been gained from these surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  ADS  Google Scholar 

  • Armstrong DJ, Osborn HP, Brown DJA et al (2014) On the abundance of circumbinary planets. MNRAS 444:1873–1883

    Article  ADS  Google Scholar 

  • Ballard S, Johnson JA (2016) The Kepler Dichotomy among the M dwarfs: half of systems contain five or more coplanar planets. ApJ 816:66

    Article  ADS  Google Scholar 

  • Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109

    Article  ADS  Google Scholar 

  • Bonfils X, Astudillo-Defru N, Díaz R et al (2017) A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs. Ar**v e-prints

    Google Scholar 

  • Borucki WJ (2016) KEPLER mission: development and overview. Rep Prog Phys 79(3):036901

    Article  ADS  Google Scholar 

  • Bryan ML, Knutson HA, Howard AW et al (2016) Statistics of long period gas giant planets in known planetary systems. ApJ 821:89

    Article  ADS  Google Scholar 

  • Buchhave LA, Latham DW, Johansen A et al (2012) An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486:375–377

    Article  ADS  Google Scholar 

  • Burke CJ, Christiansen JL, Mullally F et al (2015) Terrestrial planet occurrence rates for the Kepler GK dwarf sample. ApJ 809:8

    Article  ADS  Google Scholar 

  • Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455

    Article  ADS  Google Scholar 

  • Ciardi DR, Fabrycky DC, Ford EB et al (2013) On the relative sizes of planets within Kepler multiple-candidate systems. ApJ 763:41

    Article  ADS  Google Scholar 

  • Clanton C, Gaudi BS (2016) Synthesizing exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. ApJ 819:125

    Article  ADS  Google Scholar 

  • Cumming A (2004) Detectability of extrasolar planets in radial velocity surveys. MNRAS 354:1165–1176

    Article  ADS  Google Scholar 

  • Cumming A, Butler RP, Marcy GW et al (2008) The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120:531

    Article  ADS  Google Scholar 

  • De Cat P, Fu JN, Ren AB et al (2015) Lamost observations in the Kepler field. I. Database of low-resolution spectra. ApJS 220:19

    Google Scholar 

  • Deck KM, Holman MJ, Agol E et al (2012) Rapid dynamical chaos in an exoplanetary system. ApJ 755:L21

    Article  ADS  Google Scholar 

  • Dong S, Zhu Z (2013) Fast rise of “Neptune-size” planets (4-8 R ) from P = 10 to 250 days—statistics of Kepler planet candidates up to 0.75 AU. ApJ 778:53

    Article  ADS  Google Scholar 

  • Dong S, **e JW, Zhou JL, Zheng Z, Luo A (2017) LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements. Ar**v e-prints

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45

    Article  ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. ApJ 790:146

    Article  ADS  Google Scholar 

  • Fang J, Margot JL (2013) Are planetary systems filled to capacity? A study based on Kepler results. ApJ 767:115

    Article  ADS  Google Scholar 

  • Feynman RP (1963) Feynman lectures on physics, vol 1, Addison-Wesley, Boston

    Google Scholar 

  • Figueira P, Marmier M, Boué G et al (2012) Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems. A&A 541:A139

    Article  ADS  Google Scholar 

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117

    Article  ADS  Google Scholar 

  • Foreman-Mackey D, Hogg DW, Morton TD (2014) Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. ApJ 795:64

    Article  ADS  Google Scholar 

  • Foreman-Mackey D, Morton TD, Hogg DW, Agol E, Schölkopf B (2016) The population of long-period transiting exoplanets. AJ 152:206

    Article  ADS  Google Scholar 

  • Fressin F, Torres G, Charbonneau D et al (2013) The false positive rate of Kepler and the occurrence of planets. ApJ 766:81

    Article  ADS  Google Scholar 

  • Fulton BJ, Tonry JL, Flewelling H et al (2014) A search for planetary eclipses of white dwarfs in the pan-STARRS1 medium-deep fields. ApJ 796:114

    Article  ADS  Google Scholar 

  • Fulton BJ, Petigura EA, Howard AW et al (2017) The California-Kepler survey. III. A gap in the radius distribution of small planets. AJ 154:109

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Prusti T, de Bruijne JHJ et al (2016) The Gaia mission. A&A 595:A1

    Google Scholar 

  • Gaidos E, Mann AW (2014) M dwarf metallicities and giant planet occurrence: ironing out uncertainties and systematics. ApJ 791:54

    Article  ADS  Google Scholar 

  • Gaidos E, Mann AW, Kraus AL, Ireland M (2016) They are small worlds after all: revised properties of Kepler M dwarf stars and their planets. MNRAS 457:2877–2899

    Article  ADS  Google Scholar 

  • Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a hubble space telescope search. ApJ 545:L47–L51

    Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Grether D, Lineweaver CH (2006) How dry is the brown dwarf desert? quantifying the relative number of planets, brown dwarfs, and stellar companions around nearby sun-like stars. ApJ 640:1051–1062

    Article  ADS  Google Scholar 

  • Guo X, Johnson JA, Mann AW et al (2017) The metallicity distribution and hot Jupiter rate of the Kepler field: hectochelle high-resolution spectroscopy for 776 Kepler target stars. ApJ 838:25

    Article  ADS  Google Scholar 

  • Hadden S, Lithwick Y (2014) Densities and eccentricities of 139 Kepler planets from transit time variations. ApJ 787:80

    Article  ADS  Google Scholar 

  • Hansen BMS, Murray N (2012) Migration then assembly: formation of Neptune-mass planets inside 1 AU. ApJ 751:158

    Article  ADS  Google Scholar 

  • He MY, Triaud AHMJ, Gillon M (2017) First limits on the occurrence rate of short-period planets orbiting brown dwarfs. MNRAS 464:2687–2697

    Article  ADS  Google Scholar 

  • Hirano T, Dai F, Gandolfi D et al (2017) Planetary systems around low-mass stars unveiled by K2. Ar**v e-prints

    Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15

    Google Scholar 

  • Huang C, Wu Y, Triaud AHMJ (2016) Warm Jupiters are less lonely than hot Jupiters: close neighbors. ApJ 825:98

    Article  ADS  Google Scholar 

  • Ida S, Lin DNC (2008) Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths. ApJ 685:584–595

    Article  ADS  Google Scholar 

  • Johnson JA, Howard AW, Bowler BP et al (2010) Retired a stars and their companions. IV. Seven Jovian exoplanets from Keck observatory. PASP 122:701

    Article  ADS  Google Scholar 

  • Kasting JF, Kopparapu R, Ramirez RM, Harman CE (2014) Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc Natl Acad Sci 111:12641–12646

    Article  ADS  Google Scholar 

  • Lecar M, Podolak M, Sasselov D, Chiang E (2006) On the location of the snow line in a protoplanetary disk. ApJ 640:1115–1118

    Article  ADS  Google Scholar 

  • Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8

    Article  ADS  Google Scholar 

  • Lopez ED, Fortney JJ (2013) The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. ApJ 776:2

    Article  ADS  Google Scholar 

  • Lovis C, Fischer D (2010) Radial velocity techniques for exoplanets. University of Arizona Press, Tucson, pp 27–53

    Google Scholar 

  • Mann AW, Gaidos E, Vanderburg A et al (2017) Zodiacal exoplanets in time (ZEIT). IV. Seven transiting planets in the Praesepe cluster. AJ 153:64

    Article  ADS  Google Scholar 

  • Masuda K, Winn JN (2017) Reassessment of the null result of the HST search for planets in 47 Tucanae. AJ 153:187

    Article  ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arxiv:11092497

    Google Scholar 

  • Mazeh T, Holczer T, Faigler S (2016) Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. A&A 589:A75

    Article  ADS  Google Scholar 

  • Montet BT, Crepp JR, Johnson JA, Howard AW, Marcy GW (2014) The TRENDS high-contrast imaging survey. IV. The occurrence rate of giant planets around M dwarfs. ApJ 781:28

    Article  ADS  Google Scholar 

  • Muirhead PS, Mann AW, Vanderburg A et al (2015) Kepler-445, Kepler-446 and the occurrence of compact multiples orbiting mid-M dwarf stars. ApJ 801:18

    Article  ADS  Google Scholar 

  • Mulders GD, Pascucci I, Apai D (2015) An increase in the mass of planetary systems around lower-mass stars. ApJ 814:130

    Article  ADS  Google Scholar 

  • Mulders GD, Pascucci I, Apai D, Frasca A, Molenda-Zakowicz J (2016) A super-solar metallicity for stars with hot rocky exoplanets. AJ 152:187

    Article  ADS  Google Scholar 

  • Neves V, Bonfils X, Santos NC et al (2013) Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTO M dwarf sample. A&A 551:A36

    Article  ADS  Google Scholar 

  • Owen JE, Wu Y (2013) Kepler planets: a tale of evaporation. ApJ 775:105

    Article  ADS  Google Scholar 

  • Owen JE, Wu Y (2017) The evaporation valley in the Kepler planets. ApJ 847:29

    Article  ADS  Google Scholar 

  • Pepper J, Gould A, Depoy DL (2003) Using all-sky surveys to find planetary transits. Acta Astron 53:213–228

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting sun-like stars. Proc Natl Acad Sci 110:19,273–19,278

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW et al (2017) The California-Kepler survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. AJ 154:107

    Article  ADS  Google Scholar 

  • Petigura EA, Marcy GW, Winn JN et al (2018) The California-Kepler survey. IV. Metal-rich stars host a greater diversity of planets. AJ 155:89

    Article  ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Pu B, Wu Y (2015) Spacing of Kepler planets: sculpting by dynamical instability. ApJ 807:44

    Article  ADS  Google Scholar 

  • Reffert S, Bergmann C, Quirrenbach A, Trifonov T, Künstler A (2015) Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity. A&A 574:A116

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telescopes Instrum Syst 1(1):014003

    Google Scholar 

  • Sahlmann J, Ségransan D, Queloz D et al (2011) Search for brown-dwarf companions of stars. A&A 525:A95

    Article  Google Scholar 

  • Sanchis-Ojeda R, Rappaport S, Winn JN et al (2014) A study of the shortest-period planets found with Kepler. ApJ 787:47

    Article  ADS  Google Scholar 

  • Santerne A, Moutou C, Tsantaki M et al (2016) SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A 587:A64

    Article  Google Scholar 

  • Santos NC, Israelian G, Mayor M, Rebolo R, Udry S (2003) Statistical properties of exoplanets. II. Metallicity, orbital parameters, and space velocities. A&A 398:363–376

    Article  ADS  Google Scholar 

  • Santos NC, Adibekyan V, Figueira P et al (2017) Observational evidence for two distinct giant planet populations. A&A 603:A30

    Article  ADS  Google Scholar 

  • Schlaufman KC (2018) Evidence of an upper bound on the masses of planets and its implications for giant planet formation. ApJ 853:37

    Article  ADS  Google Scholar 

  • Schlaufman KC, Winn JN (2016) The occurrence of additional giant planets inside the water-ice line in systems with hot Jupiters: evidence against high-eccentricity migration. ApJ 825:62

    Article  ADS  Google Scholar 

  • Shallue CJ, Vanderburg A (2018) Identifying exoplanets with deep learning: a five-planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. AJ 155:94

    Google Scholar 

  • Tabachnik S, Tremaine S (2002) Maximum-likelihood method for estimating the mass and period distributions of extrasolar planets. MNRAS 335:151–158

    Article  ADS  Google Scholar 

  • Thompson SE, Coughlin JL, Hoffman K et al (2017) Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on data release 25. Ar**v e-prints

    Google Scholar 

  • Tremaine S, Dong S (2012) The statistics of multi-planet systems. AJ 143:94

    Article  ADS  Google Scholar 

  • Triaud AHMJ, Martin DV, Ségransan D et al (2017) The EBLM project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters. A&A 608:A129

    Article  ADS  Google Scholar 

  • Twicken JD, Jenkins JM, Seader SE et al (2016) Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). AJ 152:158

    Article  ADS  Google Scholar 

  • Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439

    Article  ADS  Google Scholar 

  • Van Eylen V, Albrecht S (2015) Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. ApJ 808:126

    Article  ADS  Google Scholar 

  • Van Eylen V, Agentoft C, Lundkvist MS et al (2017) An asteroseismic view of the radius valley: stripped cores, not born rocky. Ar**v e-prints

    Google Scholar 

  • van Sluijs L, Van Eylen V (2018) The occurrence of planets and other substellar bodies around white dwarfs using K2. MNRAS 474:4603–4611

    Article  ADS  Google Scholar 

  • Wang J, Fischer DA, Horch EP, Huang X (2015) On the occurrence rate of hot Jupiters in different stellar environments. ApJ 799:229

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW, Petigura EA et al (2018) The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. AJ 155:48

    Article  ADS  Google Scholar 

  • Wilson RF, Teske J, Majewski SR et al (2018) Elemental abundances of Kepler objects of interest in APOGEE. I. Two distinct orbital period regimes inferred from host star iron abundances. AJ 155:68

    Article  ADS  Google Scholar 

  • Winn JN (2010) Exoplanet transits and occultations. University of Arizona Press, Tucson, pp 55–77

    Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447

    Article  ADS  Google Scholar 

  • Wittenmyer RA, Butler RP, Tinney CG et al (2016) The Anglo-Australian planet search XXIV: the frequency of Jupiter analogs. ApJ 819:28

    Article  ADS  Google Scholar 

  • Wolfgang A, Laughlin G (2012) The effect of population-wide mass-to-radius relationships on the interpretation of Kepler and HARPS super-Earth occurrence rates. ApJ 750:148

    Article  ADS  Google Scholar 

  • Wright JT, Veras D, Ford EB et al (2011) The California planet survey. III. A possible 2:1 resonance in the exoplanetary triple system HD 37124. ApJ 730:93

    Article  ADS  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ 753:160

    Article  ADS  Google Scholar 

  • **e JW, Dong S, Zhu Z et al (2016) Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis. Proc Natl Acad Sci 113:11,431–11,435

    Article  Google Scholar 

  • Youdin AN (2011) The exoplanet census: a general method applied to Kepler. ApJ 742:38

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua N. Winn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Winn, J.N. (2018). Planet Occurrence: Doppler and Transit Surveys. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_195-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_195-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Planet Occurrence: Doppler and Transit Surveys
    Published:
    13 March 2024

    DOI: https://doi.org/10.1007/978-3-319-30648-3_195-2

  2. Original

    Planet Occurrence: Doppler and Transit Surveys
    Published:
    12 April 2018

    DOI: https://doi.org/10.1007/978-3-319-30648-3_195-1

Navigation