Wheel-Ground Modeling in Planetary Exploration: From Unified Simulation Frameworks Towards Heterogeneous, Multi-tier Wheel Ground Contact Simulation

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 42))

Abstract

Today’s growing scientific interest in extraterrestrial bodies increases the necessity of extended mobility on these objects. Thus, planetary exploration systems are facing new challenges in terms of mission planning as well as obstacle and soil traversability. In order to fit the tight schedules of space missions and to cover a large variety of environmental conditions, experimental test setups are complemented by numerical simulation models used as virtual prototypes. In this context we present an integrated simulation environment which allows for using different available contact models, ranging from simple but real-time capable approximations based on rigid-body modeling techniques up to very accurate solutions based on Discrete Element Method (DEM). The models are explained and classified for their applications. For this work, a one-point Bekker based approach (BCM) and the so-called Soil Contact Model (SCM), which is a multi-point extension of the Bekker–Wong method taking soil deformation into account, are used for further analysis. These two contact models are applied for homogeneous simulations with only one type of contact model for all wheels as well as for a heterogeneous multi-tiered simulation with different contact models for the wheels. It will be shown that the multi-tiered approach enhances the simulation result accuracy compared to the results of a homogeneous model with a low level of detail while speeding up the simulation in comparison to a homogeneous higher-tier model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krenn R, Hirzinger G (2008) Simulation of rover locomotion on sandy terrain-modeling, verification and validation. In: 10th ESA workshop on advanced space technologies for robotics and automation–ASTRA, (2008) Noordwijk. Niederlande, ESA

    Google Scholar 

  2. Lichtenheldt R, Hellerer M, Barthelmes S, Buse F (2015) Heterogeneous, multi-tier wheel ground contact simulation for planetary exploration ISBN 978-84-944244-0-3

    Google Scholar 

  3. Elmqvist H, Mattsson SE, Otter M (1999) Modelica a language for physical system modeling, visualization and interaction. In: Proceedings of the 1999 IEEE international symposium on computer aided control system design (Cat. No.99TH8404)

    Google Scholar 

  4. Hellerer M, Bellmann T, Schlegel F (2014) The DLR Visualization Library Recent development and applications. In: Proceedings of the 10th international modelica conference–Lund, Sweden - Mar 10–12, 2014, pp 899–911

    Google Scholar 

  5. Erleben K (2004) Stable, robust, and versatile multibody dynamics animation. Phd thesis, University of Copenhagen, Denmark

    Google Scholar 

  6. Mirtich BV (1996) Impulse-based dynamic simulation of rigid body systems. Dissertation, University of California at Berkeley

    Google Scholar 

  7. Bender J, Erleben K, Trinkle JC (2014) Interactive simulation of rigid body dynamics in computer graphics. Comput Gr Forum 33(1):246–270

    Article  Google Scholar 

  8. Cottle RW, Dantzig GB (1968) Complementary pivot theory of mathematical programming. Linear Algebra Appl 1(1):103–125

    Article  MathSciNet  MATH  Google Scholar 

  9. Boeing A, Bräunl T (2007) Evaluation of real-time physics simulation systems. In: Proceedings of the 5th international conference on computer graphics and interactive techniques in Australia and Southeast Asia, ACM pp 281–288

    Google Scholar 

  10. Marhefka DW, Orin DE (1996) Simulation of contact using a nonlinear dam** model. Proc IEEE Int Conf Robot Autom 2(April):1662–1668

    Article  Google Scholar 

  11. Lichtenheldt R, Schäfer B, Krömer O (2014) Hammering beneath the surface of mars—modeling and simulation of the impact-driven locomotion of the hp3-mole by coupling enhanced multi-body dynamics and discrete element method. In: Sha** the future by engineering: 58th Ilmenau scientific colloquium IWK, URN (Paper): http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2014iwk-155:2 Technische Universität Ilmenau, 08–12 Sept 2014

  12. Vivake Asnani, Damon Delap, Colin Creager (2009) The development of wheels for the Lunar Roving Vehicle. J Terramech 46(3):89–103

    Article  Google Scholar 

  13. Trease B, Arvidson RE, Lindemann R, Bennett K, Feng Z, Iagnemma K, Senatore C, Van Dyke L (2011) Dynamic modeling and soil mechanics for path planning. In: Proceedings of the ASME 2011 international design engineering technical conference & computers and information in engineering conference IDETC/CIE, pp 1–11

    Google Scholar 

  14. Iagnemma K, Senatore C, Trease B (2011) Terramechanics modeling of Mars surface exploration rovers for simulation and parameter estimation. In: Proceedings of the IDETC/CIE 2011 ASME international design engineering technical conferences & computers and information in engineering conference, pp 1–8

    Google Scholar 

  15. Wong JY (2008) Theory of ground vehicles, 4th edn. Wiley, New Jersey

    Google Scholar 

  16. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering and practice. Wiley, New Jersey

    Google Scholar 

  17. Fabian Buse (2015) Masterarbeit Machbarkeitsstudie für einen roboterbasierten Radprüfstand zur Entwicklung von Mars Mondrovern. Masterthesis, RWTH Aachen

    Google Scholar 

  18. Krenn R, Hirzinger G (2009) SCM a soil contact model for multi-body system simulations. In: 11th European regional conference of the international society for terrain-vehicle systems–ISTVS 2009, Bremen, Germany

    Google Scholar 

  19. Sumner RW, O’Brien JF, Hodgins JK (1999) Animating sand, mud, and snow. Comput Gr Forum 18:17–26

    Article  Google Scholar 

  20. Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C (2014) Simulations of mars rover traverses. J Field Robot 31(1):141–160

    Article  Google Scholar 

  21. Holz D, Azimi A, Teichmann M, Kovecses J (2012) Mobility prediction of rovers on soft terrain: effects of wheel- and tool-induced terrain deformations. Proceedings of the fifteenth international conference on climbing and walking robots and the support technologies for mobile machines CLAWAR 2012:647–654

    Google Scholar 

  22. Krenn R, Gibbesch A, Binet G, Bemporad A (2013) Model predictive traction and steering control of planetary rovers. In: 12th symposium on advanced space technologies in robotics and automation: ASTRA 2013

    Google Scholar 

  23. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  24. Obermayr M (2013) Prediction of load data for construction equipment using the discrete element method. PhD thesis, Universität Stuttgart

    Google Scholar 

  25. Nakashima H, Oida A, Momozu M, Kawase Y, Kanamori H (2007) Parametric analysis of lugged wheel performance for a lunar microrover by means of dem. J Terramech 44(2):153–162

    Google Scholar 

  26. Knuth MA, Johnson JB, Hopkins MA, Sullivan RJ, Moore JM (2011) Discrete element modeling of a mars exploration rover wheel in granular material. J Terramech

    Google Scholar 

  27. Das N (2007) Modeling three-dimensional shape of sand grains using discrete element method. PhD thesis, University of Florida

    Google Scholar 

  28. Li W, Huang Y, Cui Y, Dong S, Wang J (2010) Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion. J Terramech 47(3):161–172

    Article  Google Scholar 

  29. Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int J Eng Sci 38:1713–1740

    Article  Google Scholar 

  30. Plassiard J-P, Belheine N, Donze F-V (2007) Calibration procedure for spherical discrete elements using a local moment law. Technical report, Universität Grenoble

    Google Scholar 

  31. van der Linde J (2007) Discrete element modeling of a vibratory subsoiler. Master’s thesis, University of Stellenbosch, Department of Mechanical and Mechatronic Engineering

    Google Scholar 

  32. Asaf Z, Rubinstein D, Shmulevich I (2006) Evaluation of link-track performances using dem. J Terramech 43(2):141–161

    Article  Google Scholar 

  33. Harada T, Tanaka M, Koshizuka S, Kawaguchi Y (2007) Real-time coupling of fluids and rigid bodies. In APCOM, Kyoto

    Google Scholar 

  34. Li A, Melanz D, Serban R, Negrut D (2014) A gpu-based preconditioned newton-krylov solver for flexible multibody dynamics. In: 3rd joint international conference on multibody system dynamics, IMSD 2014, Busan, Korea

    Google Scholar 

  35. Negrut D, Tasora A, Anitescu M, Mazhar H (2011) Solving large multi-body dynamics problems on the GPU. In: GPU Gems, pp 269–280

    Google Scholar 

  36. Kleinert J, Obermayr M, Balzer M (2013) Modeling of large scale granular systems using the discrete element mehtod and the non-smooth contact dynamics method: a comparison. In: ECCOMAS multibody dynamics pp 1–4 July, University of Zagreb, Kroatien

    Google Scholar 

  37. Melanz D, Mazhar H, Negrut D (2014) Gauging military vehicle mobility through many-body dynamics simulation. In: The 3rd joint international conference on multibody system dynamics (IMSD 2014), Busan, Korea

    Google Scholar 

  38. Fleissner F (2012) Dokumentation, template-files und beispiele zum programmpaket “pasimodo”. Inpartik & Universität Stuttgart, Template files

    Google Scholar 

  39. Lichtenheldt R, Schäfer B (2013) Planetary rover locomotion on soft granular soils - efficient adaption of the rolling behaviour of nonspherical grains for discrete element simulations. In: 3rd international conference on particle-based methods, pp 807–818, ISBN 978-84-941531-8-1, Stuttgart

    Google Scholar 

  40. Lichtenheldt R (2015) A novel systematic method to estimate the contact parameters of particles in discrete element simulations of soil. In: 4th international conference on particle-based methods - particles 2015, pp 430-441, ISBN 978-84-944244-7-2, Barcelona

    Google Scholar 

  41. Lichtenheldt R, Schäfer B (2013) Planetary rover locomotion on soft granular Soils–efficient adaption of the rolling behaviour of nonspherical grains for discrete element simulations. In: 3rd international conference on particle-based methods, pp 807–818, ISBN 978-84-941531-8-1, Stuttgart, Germany

    Google Scholar 

  42. Lichtenheldt R, Schäfer B, Olaf K (2014) Hammering beneath the surface of mars–modeling and simulation of the impact-driven locomotion of the HP3-Mole by coupling enhanced multi-body dynamics and discrete element method. In: 58th Ilmenau scientific colloquium (IWK), Ilmenau, Germany, Technische Universität Ilmenau

    Google Scholar 

  43. Lichtenheldt R, Schäfer B (2013) Locomotion on soft granular soils: a discrete element based approach for simulations in planetary exploration. In: 12th symposium on advanced space technologies in robotics and automation: ASTRA 2013, Noordwijk, the Netherlands

    Google Scholar 

  44. Barnerdt WB et al. (2013) Insight: a discovery mission to explore the interior of mars. In: 44th lunar and planetary science conference, Texas, USA

    Google Scholar 

  45. Spohn T, Grott M, Smrekar S, Krause C, Hudson TL (2014) Measuring the martian heat flow using the heat flow and physical properties package (hp3). In: 45th lunar and planetary science conference

    Google Scholar 

  46. Lichtenheldt R (2015) Hammering beneath the surface of Mars–Analyse des Schlagzyklus und der äußeren Form des HP3-Mole mit Hilfe der Diskrete Elemente Methode. In: IFToMM D-A-CH 2015, Dortmund, Germany ISBN 978-3-940402-03-5

    Google Scholar 

  47. Lichtenheldt R, Schäfer B (2013) Locomotion on soft granular soils: a discrete element based approach for simulations in planetary exploration. In: 12th symposium on advanced space technologies in robotics and automation, ESA/ESTEC, Netherlands

    Google Scholar 

  48. Wedler A, Rebele B, Reill J, Suppa M, Hirschmüller H, Brand C, Schuster M, Vodermayer B, Gmeiner H, Maier A, Willberg B, Bussmann K, Wappler F, Hellerer M, Lichtenheldt R (2015) LRU - lightweight rover unit. In Proceedings of the 13th symposium on advanced space technologies in robotics and automation (ASTRA)

    Google Scholar 

  49. Wedler A, Hellerer M, Rebele B, Gmeiner H, Vodermayer B, Bellmann T, Barthelmes S, Lange C, Witte L, Schmitz N, Knapmeyer M, Czeluschke A, Thomsen L, Waldmann C, Wilde M, Takei Y (2015) Robex components and methods for the planetary exploration demonstration mission (1). In: 13th symposium on advanced space 820 technologies in robotics and automation, ESA/ESTEC, Netherlands

    Google Scholar 

  50. Apfelbeck M, Kuß S, Rebele B, Schäfer B (2011) A systematic approach to reliably characterize soils based on bevameter testing. J Terramech Elsevier 48:360–371

    Article  Google Scholar 

  51. Dahlquist G (1963) A special stability problem for linear multistep methods. BIT 3(1):27–43

    Article  MathSciNet  MATH  Google Scholar 

  52. Lichtenheldt R, Schäfer B, Krömer O, van Zoest T (2014) Hammering beneath the surface of Mars - forensic engineering of failures in the HP3-Mole by applying multi-body dynamics simulation. In: Proceedings of 3rd international conference on multibody system dynamics IMSD 2014, ISBN 978-89-950027-7-3, Busan, Korea

    Google Scholar 

Download references

Acknowledgments

Parts of this work have been granted by the Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. under contract number HA-304 (Robotic Exploration of Extreme Environments—ROBEX)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Lichtenheldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lichtenheldt, R., Barthelmes, S., Buse, F., Hellerer, M. (2016). Wheel-Ground Modeling in Planetary Exploration: From Unified Simulation Frameworks Towards Heterogeneous, Multi-tier Wheel Ground Contact Simulation. In: Font-Llagunes, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-30614-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30614-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30612-4

  • Online ISBN: 978-3-319-30614-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation