Alopecia Areata

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

Alopecia areata (AA) is an autoimmune disease characterized by targeting of the hair follicle. Clinically, patients exhibit nonscarring hair loss with varying presentations across all age groups and follow an unpredictable course. Our understanding of the pathogenic mechanisms underlying AA has been greatly enhanced by recent large scale studies of genetic associations of disease. Descriptive studies in humans in tandem with mechanistic experiments in mice have helped define cellular and soluble disease drivers at the level of the end-organ target, the hair follicle, as well as the immune system.In AA, those mechanisms that protect the hair follicle from immune attack and maintain the immune privileged status of this site become disrupted and allow autoreactive cytotoxic immune cells to recognize and respond to self-antigens associated with the hair follicle.Our enhanced understanding of the disease has led to the identification of new therapeutic targets for AA.In particular, targeting of JAK molecules, proximal intermediates that transduce ligand binding signals for a wide variety of cytokine receptors, have shown promise in the treatment of this disease in animals models and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 234.33
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkhalifah A, Alsantali A, Wang E, et al. Alopecia areata update: part I. Clinical picture, histopathology, and pathogenesis. J Am Acad Dermatol. 2010;62:177–88. – quiz 189–90. doi: 10.1016/j.jaad.2009.10.032.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenthal T. Aulus cornelius celsus: his contributions to dermatology. Archives of Dermatology. 1961;84:613–18. doi:10.1001/archderm.1961.01580160077013.

  3. McDonagh AJ, Tazi-Ahnini R. Epidemiology and genetics of alopecia areata. Clin Exp Dermatol. 2002;27:405–9.

    Article  CAS  PubMed  Google Scholar 

  4. van der Steen P, Traupe H, Happle R, Boezeman J, Sträter R, Hamm H. The genetic risk for alopecia areata in first degree relatives of severely affected patients. An estimate. Acta Derm Venereol. 1992;72:373–5.

    PubMed  Google Scholar 

  5. Rodriguez TA, Fernandes KE, Dresser KL, Duvic M, National Alopecia Areata Registry. Concordance rate of alopecia areata in identical twins supports both genetic and environmental factors. J Am Acad Dermatol. 2010;62:525–7. doi:10.1016/j.jaad.2009.02.006.

    Article  PubMed  Google Scholar 

  6. Jackow C, Puffer N, Hordinsky M, Nelson J, Tarrand J, Duvic M. Alopecia areata and cytomegalovirus infection in twins: genes versus environment? J Am Acad Dermatol. 1998;38:418–25.

    Article  CAS  PubMed  Google Scholar 

  7. Sundberg JP, Silva KA, Li R, Cox GA, King LE. Adult-onset Alopecia areata is a complex polygenic trait in the C3H/HeJ mouse model. J Invest Dermatol. 2004;123:294–7. doi:10.1111/j.0022-202X.2004.23222.x.

    Article  CAS  PubMed  Google Scholar 

  8. Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–7. doi:10.1038/nature09114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jagielska D, Redler S, Brockschmidt FF, et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J Invest Dermatol. 2012;132:2192–7. doi:10.1038/jid.2012.129.

    Article  CAS  PubMed  Google Scholar 

  10. Betz RC, Petukhova L, Ripke S, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015;6:5966. doi:10.1038/NCOMMS6966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3:879–89. doi:10.1038/nri1224.

    Article  CAS  PubMed  Google Scholar 

  12. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29:58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J Investig Dermatol Symp Proc. 2003;8:188–94. doi:10.1046/j.1087-0024.2003.00807.x.

    Article  PubMed  Google Scholar 

  14. Billingham RE, Boswell T. Studies on the problem of corneal homografts. Proc R Soc Lond B Biol Sci. 1953;141:392–406. doi:10.1098/rspb.1953.0049.

    Article  CAS  PubMed  Google Scholar 

  15. Barker CF, Billingham RE. Analysis of local anatomic factors that influence the survival times of pure epidermal and full-thickness skin homografts in guinea pigs. Ann Surg. 1972;176:597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Billingham RE, Silvers WK. A biologist’s reflections on dermatology. J Invest Dermatol. 1971;57:227–40.

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, et al. Trans-gender induction of hair follicles. Nature. 1999;402:33–4. doi:10.1038/46938.

    Article  CAS  PubMed  Google Scholar 

  18. Harrist TJ, Ruiter DJ, Mihm MC, Bhan AK. Distribution of major histocompatibility antigens in normal skin. Br J Dermatol. 1983;109:623–33. doi:10.1111/j.1365-2133.1983.tb00540.x.

    Article  CAS  PubMed  Google Scholar 

  19. Christoph T, Müller-Röver S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Rückert R, Paus R. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol. 2000;142:862–73.

    Article  CAS  PubMed  Google Scholar 

  20. Ito T, Ito N, Saatoff M, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol. 2008;128:1196–206. doi:10.1038/sj.jid.5701183.

    Article  CAS  PubMed  Google Scholar 

  21. Apte RS, Sinha D, Mayhew E, et al. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. 1998;160:5693–6.

    CAS  PubMed  Google Scholar 

  22. Foitzik K, Lindner G, Mueller-Roever S, et al. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB J. 2000;14:752–60. doi:10.1096/fj.1530-6860.

    CAS  PubMed  Google Scholar 

  23. Slominski A, Wortsman J, Mazurkiewicz JE, et al. Detection of proopiomelanocortin- derived antigens in normal and pathologic human skin. J Lab Clin Med. 1993;122:658–66.

    CAS  PubMed  Google Scholar 

  24. Nanninga PB, Ghanem GE, Lejeune FJ, et al. Evidence for alpha-MSH binding sites on human scalp hair follicles: preliminary results. Pigment Cell Res. 1991;4:193–8.

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Marr AK, Breitkopf T, et al. Hair follicle mesenchyme-associated PD-L1 regulates T-cell activation induced apoptosis: a potential mechanism of immune privilege. J Invest Dermatol. 2014;134:736–45. doi:10.1038/jid.2013.368.

    Article  CAS  PubMed  Google Scholar 

  26. Paus R, Slominski A, Czarnetzki BM. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med. 1993;66:541–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moresi JM, Horn TD. Distribution of Langerhans cells in human hair follicle. J Cutan Pathol. 1997;24:636–40. doi:10.1111/j.1600-0560.1997.tb01095.x.

    Article  CAS  PubMed  Google Scholar 

  28. Bröcker EB, Echternacht-Happle K, Hamm H, Happle R. Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: modulation by topical immunotherapy. J Invest Dermatol. 1987;88:564–8.

    Article  PubMed  Google Scholar 

  29. Todes-Taylor N, Turner R, Wood GS, et al. T cell subpopulations in alopecia areata. J Am Acad Dermatol. 1984;11:216–23.

    Article  CAS  PubMed  Google Scholar 

  30. **ng L, Dai Z, Jabbari A, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20:1043–9. doi:10.1038/nm.3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sundberg JP, Cordy WR, King LE. Alopecia areata in aging C3H/HeJ mice. J Invest Dermatol. 1994;102:847–56. doi:10.1111/1523-1747.ep12382416.

    Article  CAS  PubMed  Google Scholar 

  32. Carroll JM, McElwee KJ, E King L, et al. Gene array profiling and immunomodulation studies define a cell-mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J Invest Dermatol. 2002;119:392–402. doi:10.1046/j.1523-1747.2002.01811.x.

    Article  CAS  PubMed  Google Scholar 

  33. Gilhar A, Keren A, Shemer A, et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J Invest Dermatol. 2013;133:844–7. doi:10.1038/jid.2012.365.

    Article  CAS  PubMed  Google Scholar 

  34. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1991;285:727–9.

    Article  Google Scholar 

  35. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2:255–60. doi:10.1038/85321.

    Article  CAS  PubMed  Google Scholar 

  36. McElwee KJ, Freyschmidt-Paul P, Hoffmann R, et al. Transfer of CD8(+) cells induces localized hair loss whereas CD4(+)/CD25(-) cells promote systemic alopecia areata and CD4(+)/CD25(+) cells blockade disease onset in the C3H/HeJ mouse model. J Invest Dermatol. 2005;124:947–57. doi:10.1111/j.0022-202X.2005.23692.x.

    Article  CAS  PubMed  Google Scholar 

  37. Tembhre MK, Sharma VK. T-helper and regulatory T-cell cytokines in the peripheral blood of patients with active alopecia areata. Br J Dermatol. 2013;169:543–8. doi:10.1111/bjd.12396.

    Article  CAS  PubMed  Google Scholar 

  38. Kaufman G, d’Ovidio R, Kaldawy A, et al. An unexpected twist in alopecia areata pathogenesis: are NK cells protective and CD49b + T cells pathogenic? Exp Dermatol. 2010;19:e347–9. doi:10.1111/j.1600-0625.2010.01106.x.

    Article  PubMed  Google Scholar 

  39. Bertolini M, Zilio F, Rossi A, et al. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS One. 2014;9:e94260. doi:10.1371/journal.pone.0094260.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wong GH, Clark-Lewis I, McKimm-Breschkin JL, Schrader JW. Interferon-gamma-like molecule induces Ia antigens on cultured mast cell progenitors. Proc Natl Acad Sci U S A. 1982;79:6989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banovac K, Neylan D, Leone J, et al. Are the mast cells antigen presenting cells? Immunol Invest. 1989;18:901–6.

    Article  CAS  PubMed  Google Scholar 

  42. Rumsaeng V, Cruikshank WW, Foster B, et al. Human mast cells produce the CD4+ T lymphocyte chemoattractant factor, IL-16. J Immunol. 1997;159:2904–10.

    CAS  PubMed  Google Scholar 

  43. Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLos Biol. 2014;12:e1002002. doi:10.1371/journal.pbio.1002002.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gilhar A, Kam Y, Assy B, Kalish RS. Alopecia areata induced in C3H/HeJ mice by interferon-gamma: evidence for loss of immune privilege. J Invest Dermatol. 2005;124:288–9. doi:10.1111/j.0022-202X.2004.23580.x.

    Article  PubMed  Google Scholar 

  45. Sundberg JP, Silva KA, Edwards K, et al. Failure to induce alopecia areata in C3H/HeJ mice with exogenous interferon gamma. J Exp Anim Sci. 2007;43:265–70. doi:10.1016/j.jeas.2006.10.005.

    Article  CAS  Google Scholar 

  46. Freyschmidt Paul P, McElwee KJ, Hoffmann R, et al. Interferon-γ-deficient mice are resistant to the development of alopecia areata. Br J Dermatol. 2006;155:515–21. doi:10.1111/j.1365-2133.2006.07377.x.

    Article  CAS  PubMed  Google Scholar 

  47. Agesta N, Zabala R, Diaz-Perez JL. Alopecia areata during interferon alpha-2b/ribavirin therapy. Dermatology. 2002;205:300–1. doi:10.1159/000065841.

    Article  CAS  PubMed  Google Scholar 

  48. Taliani G, Biliotti E, Capanni M, et al. Reversible alopecia universalis during treatment with PEG-interferon and ribavirin for chronic hepatitis C. J Chemother. 2005;17:212–4. doi:10.1179/joc.2005.17.2.212.

    Article  CAS  PubMed  Google Scholar 

  49. Ghoreishi M, Martinka M, Dutz JP. Type 1 interferon signature in the scalp lesions of alopecia areata. Br J Dermatol. 2010;163:57–62. doi:10.1111/j.1365-2133.2010.09775.x.

    CAS  PubMed  Google Scholar 

  50. Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15 of a TCR- independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–66. doi:10.1016/j.immuni.2004.06.020.

    Article  CAS  PubMed  Google Scholar 

  51. Freyschmidt-Paul P, McElwee KJ, Hoffmann R, et al. Reduced expression of interleukin-2 decreases the frequency of alopecia areata onset in C3H/HeJ mice. J Invest Dermatol. 2005;125:945–51. doi:10.1111/j.0022-202X.2005.23888.x.

    Article  CAS  PubMed  Google Scholar 

  52. Abadie V, Jabri B. IL-15: a central regulator of celiac disease immunopathology. Immunol Rev. 2014;260:221–34. doi:10.1111/imr.12191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity. 2012;36:907–19. doi:10.1016/j.immuni.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  54. Waldmann TA. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J Investig Dermatol Symp Proc. 2013;16:S28–30. doi:10.1038/jidsymp.2013.8.

    Article  CAS  PubMed  Google Scholar 

  55. Leung MC, Sutton CW, Fenton DA, Tobin DJ. Trichohyalin is a potential major autoantigen in human alopecia areata. J Proteome Res. 2010;9:5153–63. doi:10.1021/pr100422u.

    Article  CAS  PubMed  Google Scholar 

  56. Delamere FM, Sladden MM, Dobbins HM, Leonardi-Bee J. Interventions for alopecia areata. Cochrane Database Syst Rev. 2008;2:CD004413. doi:10.1002/14651858.CD004413.pub2.

    Google Scholar 

  57. Alkhalifah A, Alsantali A, Wang E, et al. Alopecia areata update: part II. Treatment. J Am Acad Dermatol. 2010;62:191–202. – quiz 203–4. doi:10.1016/j.jaad.2009.10.031.

    Article  CAS  PubMed  Google Scholar 

  58. Rokhsar CK, Shupack JL, Vafai JJ, Washenik K. Efficacy of topical sensitizers in the treatment of alopecia areata. J Am Acad Dermatol. 1998;39:751–61.

    Article  CAS  PubMed  Google Scholar 

  59. Happle R. Antigenic competition as a therapeutic concept for alopecia areata. Arch Dermatol Res. 1980;267:109–14.

    Article  CAS  PubMed  Google Scholar 

  60. Wasyłyszyn T, Kozłowski W, Zabielski SL. Changes in distribution pattern of CD8 lymphocytes in the scalp in alopecia areata during treatment with diphencyprone. Arch Dermatol Res. 2007;299:231–7. doi:10.1007/s00403-007-0759-4.

    Article  PubMed  Google Scholar 

  61. Happle R, Klein HM, Macher E. Topical immunotherapy changes the composition of the peribulbar infiltrate in alopecia areata. Arch Dermatol Res. 1986;278:214–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ali J, Jane EC, James CC, Julian MW, Madeleine D, Vera P, Maria H, David N, Raphael C, Angela MC. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. doi: http://dx.doi.org/10.1016/j.ebiom.2016.03.036.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jabbari MD, PhD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    A class of medications that has recently shown promise in AA:

    1. A.

      NSAIDs

    2. B.

      TNF inhibitors

    3. C.

      Interferons

    4. D.

      JAK inhibitors

    5. E.

      ACE inhibitors

  2. 2.

    These cells are not commonly found in the peribulbar infiltrate in skin biopsies sections of AA lesions:

    1. A.

      Plasma cells

    2. B.

      CD4 T cells

    3. C.

      CD8 T cells

    4. D.

      NK cells

    5. E.

      Macrophages

  3. 3.

    Activation of this pathway is associated with enhanced immune responses to the hair follicle:

    1. A.

      Interferon-γ

    2. B.

      IL-2

    3. C.

      TGF-β

    4. D.

      all of the above

    5. E.

      A and B only

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jabbari, A., Petukhova, L., Christiano, A.M. (2017). Alopecia Areata. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation