Nanofluids for Enhanced Solar Thermal Energy Conversion

  • Chapter
  • First Online:
Engineering Applications of Nanotechnology

Abstract

Over the recent years, addressing solar energy utilization for different applications has grabbed attention of many research groups around the world. From the past few decades, scientists had made progress in innovating new devices and methods for harnessing solar energy. In this respect, they developed new materials to improve energy efficiency as one of the major focal domain. During twentieth century, scientists engineered the application of nanotechnology in various domains including solar thermal conversion devices. Nanofluids, a homogeneous dispersion and stable suspension of nanoparticles in the base fluids, have made possible progress to achieve higher thermal properties at the smallest possible concentrations. This chapter intends to summarize the research done on the nanofluid applications in different solar thermal conversion systems. This chapter includes comprehensive information about thermophysical properties of nanofluids, the design of solar thermal system at optimum conditions, and the applications of solar collector with nanofluid. Also, challenges and opportunities for future research are identified and reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amirhossein, Z., Mansoor, K. R., Maryam, K. N., & Milad, T. J.-A. (2014). An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy, 71, 658–664.

    Article  Google Scholar 

  • Arun, K. T., Vikas, K., & Subrata, K. G. (2015). Implementation of nanofluids in plate heat exchanger. International Journal of Advanced Research in Science, Engineering and Technology, 4, 2319–8354.

    Google Scholar 

  • Bandarra Filho, E. P., Hernandez Mendoza, O. S., Lins Beicker, C. L., Menezes, A., & Wen, D. (2014). Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management, 84, 261–267.

    Article  Google Scholar 

  • Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Heris Saeid, Z., Hedayatizadeh, M., & Kahani, M. (2013). Experimental study on the thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Modern Applied Science, 7, 60–69.

    Article  Google Scholar 

  • Chen, M., He, Y., Zhu, J., Shuai, Y., Jiang, B., & Huang, Y. (2015). An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 115, 85–94.

    Article  Google Scholar 

  • Choi, S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In D. A. Siginer & H. P. Wang (Eds.), Development and applications of non-newtonian flows (Vol. 66, pp. 99–105). New York: ASME.

    Google Scholar 

  • Chougule, S. S., Pise, A. T., & Madane, P. A. (2012). Performance of nanofluid-charged solar water heater by the solar tracking system. In Proceedings of IEEE International Conference on Advances in Engineering, Science and Management. EGS Pillay Engineering College Nagapattinam, Tamil Nadu, India, March 30–31, 2012.

    Google Scholar 

  • Cregan, V., & Myers, T. G. (2015). Modelling the efficiency of a nanofluid direct absorption solar collector. International Journal of Heat and Mass Transfer, 90, 505–514.

    Article  Google Scholar 

  • Das, S. K., Putra, N., & Roetzel, W. (2003). Pool boiling characteristics of nano–fluids. International Journal of Heat and Mass Transfer, 46, 851–862.

    Article  MATH  Google Scholar 

  • De Risi, A., Milanese, M., & Laforgia, D. (2013). Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renew Energy, 58, 134–139.

    Article  Google Scholar 

  • Dharmalingama, R., Sivagnanaprabhub, K. K., Senthil Kumar, B., & Thirumalaid, R. (2014). Nanomaterials and nanofluids: An innovative technology study for new paradigms for technology enhancement. Procedia Engineering, 97, 1434–1441.

    Article  Google Scholar 

  • Eastman, J. A., Phillpot, S., Choi, S., & Keblinski, K. (2004). Thermal transport in nanofluids. Annual Review of Materials Research, 34, 219–246.

    Article  MATH  Google Scholar 

  • Eshan, S., Farzad, V., & Ahmad, K. (2015). Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based flat-plate solar collector.

    Google Scholar 

  • Faizal, M., Saidur, R., Mekhilef, S., & Alim, M. A. (2013). Energy, economic and environmental analysis of metal oxides nanofluid for the flat-plate solar collector. Energy Conversion and Management, 76, 162–168.

    Article  Google Scholar 

  • Gorji, T. B., Ranjbar, A. A., & Mirzababaei, S. N. (2015). Optical properties of carboxyl functionalized carbon nanotube aqueous nanofluids as direct solar thermal energy absorbers. Solar Energy, 119, 332–342.

    Article  Google Scholar 

  • Goudarzi, K., Nejati, F., Shojaeizadeh, E., & Asadi, Y.-A. (2014). Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with the helical tube. Experimental Thermal Fluid Science, 60, 20–27.

    Article  Google Scholar 

  • Gupta, H. K., Agrawal, G. D., & Mathur, J. (2015). Investigations of the effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Studies in Thermal Engineering, 5, 70–78.

    Article  Google Scholar 

  • He, Q., Wang, S., Zeng, S., & Zheng, Z. (2013). Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Conversion and Management, 73, 150–157.

    Article  Google Scholar 

  • Hordy, N., Rabilloud, D., Meunier, J.-L., & Coulombe, S. (2014). High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Solar Energy, 105, 82–90.

    Article  Google Scholar 

  • Jafar, K. S., & Sivaraman, B. (2014). Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts. International Energy Journal, 14, 189–198.

    Google Scholar 

  • Jang, S. P., & Choi, S. (2006). Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering, 26, 2457–2463.

    Article  Google Scholar 

  • Kabeel, A. E., & El-Said, E. M. S. (2013). Applicability of flashing desalination technique for small-scale needs using a novel integrated system coupled with the nanofluid-based solar collector. Desalination, 333, 10–22.

    Article  Google Scholar 

  • Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30, 231–295.

    Article  Google Scholar 

  • Kasaeian, A., Daviran, S., Azarian, R. D., & Rashidi, A. (2014). Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Conversion and Management, 89, 368–375.

    Article  Google Scholar 

  • Keblinski, P., Phillpot, S., Choi, S., & Eastman, J. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 9, 855–863. doi:10.1016/S0017-9310(01)00175-2

  • Khullar, V., & Tyagi, H. (2010). Application of nanofluids as the working fluid in concentrating parabolic solar collectors. Paper presented at the 37th National & 4th International Conference on Fluid Mechanics & Fluid Power, IIT Madras, Chennai, India, December 16–18, 2010.

    Google Scholar 

  • Khullar, V., Tyagi, H., Phelan, P. E., Otanicar, T. P., Singh, H., & Taylor, R. A. (2013). Solar energy harvesting using nanofluids-based concentrating solar collector. Journal of Nanotechnology in Engineering and Medicine, 3, 1003–1012.

    Article  Google Scholar 

  • Khullara, V., & Tyagia, H. (2012). A study on environmental impact of nanofluid-based concentrating solar water heating system. International Journal of Environmental Studies, 69, 220–232.

    Article  Google Scholar 

  • Kulkarni, D. P., Namburu, P. K., Bargar, H. E., & Das, D. K. (2008). Convective heat transfer and fluid dynamic characteristics of SiO2-ethylene glycol/water nanofluid. Heat Transfer Engineering, 29, 1027–1035.

    Article  Google Scholar 

  • Kundan, L., & Sharma, P. (2013). Performance evaluation of a nanofluid (CuO–H2O) based low flux solar collector. International Journal of Engineering Research, 2, 108–112.

    Google Scholar 

  • Ladejevardi, S. M., Asnaghi, A., Izadkhast, P. S., & Kashano, A. H. (2013). Applicability of graphic nanofluids in direct solar energy absorption. Solar Energy, 94, 327–334.

    Article  Google Scholar 

  • Lee, S., Choi, S., & Li, Eastman J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME Journal of Heat Transfer, 121, 280–289.

    Article  Google Scholar 

  • Lenert, A., & Wang, E. N. (2012). Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy, 86, 253–265.

    Article  Google Scholar 

  • Li, Y., Zhou, J., Tung, S., Schneider, E., & **, S. (2009). A review on development of nanofluid preparation and characterization. Powder Technology, 196, 89–101.

    Article  Google Scholar 

  • Liu, Z.-H., Hu, R.-L., Lu, L., Zhao, F., & **ao, H.-S. (2013). Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high-temperature air solar collector. Energy Conversion and Management, 73, 135–143.

    Article  Google Scholar 

  • Liu, J., Ye, Z., Zhang, L., Fang, X., & Zhang, Z. (2015). A combined numerical and experimental study on graphene/ionic liquid nanofluid-based direct absorption, solar collector. Solar Energy Materials and Solar Cells, 136, 177–186.

    Article  Google Scholar 

  • Lu, L., Liu, Z.-H., & **ao, H.-S. (2011). Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Solar Energy, 85, 379–387.

    Article  Google Scholar 

  • Luo, Z., Wang, C., Wei, W., **ao, G., & Ni, M. (2014). Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. International Journal of Heat and Mass Transfer, 75, 262–271.

    Article  Google Scholar 

  • Mahian, O., kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57, 582–594.

    Article  Google Scholar 

  • Michael, J. J., & Iniyan, S. (2015). Performance analysis of a copper sheet laminated photovoltaic-thermal collector using copper oxide—water nanofluid. Solar Energy, 119, 439–451.

    Article  Google Scholar 

  • Moghadam, A. J., Mahmood, F.-G., Sajadi, M., & Monireh, H.-Z. (2014). Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Experimental Thermal and Fluid Science, 58, 9–14.

    Article  Google Scholar 

  • Moradi, A., Sani, E., Simonetti, M., Francini, F., Chiavazzo, E., & Asinari, P. (2015). Carbon–nano horn based nanofluids for a direct absorption solar collector for the civil application. Journal of Nanoscience and Nanotechnology, 15, 3488–3495.

    Article  Google Scholar 

  • Mwesigye, A., Huan, Z., & Meyer, J. P. (2015). Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Applied Energy, 156, 398–412.

    Article  Google Scholar 

  • Nasrin, R., Parvin, S., & Alim, M. A. (2013). Effect of Prandtl number on free convection in a solar collector filled with nanofluid. Procedia Engineering, 56, 54–62.

    Article  Google Scholar 

  • Norton, B. (2013). Harnessing solar heat. Northern Ireland.

    Google Scholar 

  • Omid, M., Ali, K., Ahmet, Z. S., & Somchai, W. (2014a). Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effect of tube roughness, nanoparticle size, and different thermophysical model. International Journal of Heat and Mass Transfer, 78, 64–75.

    Article  Google Scholar 

  • Omid, M., Ali, K., Ahmet, Z. S., & Somchai, W. (2014b). Performance analysis of a mini channel-based solar collector using different nanofluids. Energy Conversion and Management, 88, 129–138.

    Article  Google Scholar 

  • Omid, M., Ali, K., Saeed, Z. H., & Somchai, W. (2014c). First and Second law analysis of a mini channel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials. International Journal of Heat and Mass Transfer, 78, 1166–1176.

    Article  Google Scholar 

  • Otanicar, T. P., & Golden, J. S. (2009). Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environmental Science and Technology, 43, 6082–6087.

    Article  Google Scholar 

  • Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., & Taylor, R. A. (2010). Nanofluidbased direct absorption solar collector. Journal of Renewable and Sustainable Energy, 2, 33–102.

    Article  Google Scholar 

  • Parvin, S., Nasrin, R., & Alim, M. A. (2013). Heat transfer and entropy generation through nanofluid filled direct absorption, solar collector. International Journal of Heat and Mass Transfer, 71, 386–395.

    Article  Google Scholar 

  • Raja Sekhar, Y., Sharma, K. V., Thundil Karupparaja, R., & Chiranjeevi, C. (2013). Heat transfer enhancement with Al2O3-nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering, 64, 1474–1500.

    Article  Google Scholar 

  • Rehena, N., Salma, P., & Alim, M. A. (2014). Heat transfer by nanofluids through a flat plate solar collector. Procedia Engineering, 90, 364–370.

    Article  Google Scholar 

  • Sadique, M., & Verma, A. (2014). Nano fluid-based receivers for increasing efficiency of solar panels. International Journal of Advanced Structural Engineering, 4, 77–82.

    Google Scholar 

  • Said, Z., Sabiha, M. A., Saidur, R., Hepbasli, A., Rahim, N. A., Mekhilef, S., et al. (2015a). Performance enhancement of a flat plate solar collector using Titanium dioxide nanofluid and polyethylene glycol dispersant. Journal of Cleaner Production, 92, 343–353.

    Article  Google Scholar 

  • Said, Z., Saidur, R., Rahim, N. A., & Alim, M. A. (2014). Analyzes of energy efficiency and pum** power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Buildings, 78, 1–9.

    Article  Google Scholar 

  • Said, Z., Saidur, R., Sabiha, M. A., Hepbasli, A., & Rahim, N. A. (2015b). Energy and exergy efficiency of a flat plate solar collector using pH for Al2O3–H2O nanofluid. Journal of Cleaner Production, 1–12.

    Google Scholar 

  • Said, Z., Saidur, R., Sabiha, M. A., & Rahim, A. M. R. (2015c). Thermophysical properties of single wall carbon Nanotubes and its effect on exergy of a flat plate solar collector.

    Google Scholar 

  • Said, Z., Sajid, M. H., Alim, M. A., Saidur, R., & Rahim, N. A. (2013). Experimental on a flat plate solar collector. International Communications in Heat and Mass Transfer, 48, 99–107.

    Article  Google Scholar 

  • Saidur, R., Leong, K. Y., & Mohammad, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15,1646–1668.

    Google Scholar 

  • Saidur, R., Meng, T. C., Said, Z., Hasanuzzaman, M., & Kamyar, A. (2012). Evaluation of the effect of nanofluid-based absorbers on the direct solar collector. International Journal of Heat and Mass Transfer, 55, 5899–5907.

    Article  Google Scholar 

  • Saleh, S., Ali, K., Hamid, N., Omid, M., & Somachi, W. (2015). Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/ethylene glycol (EG)-water nanofluids. International Communications in Heat and Mass Transfer. doi:10.1016/j.icheatmasstransfer.2015.02.011

  • Selvakumar, P., & Suresh, S. (2012). Convective performance of CuO/water nanofluid in an electronic heat sink. Experimental Thermal and Fluid Science, 40, 57–63.

    Article  Google Scholar 

  • Sharma, K. V., Sunder, L., & Shyam, Sharma P. K. (2009). Estimation of heat transfer coefficient and friction factor in transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape. International Communications in Heat and Mass Transfer, 36, 503–507.

    Article  Google Scholar 

  • Sokhansefat, T., Kasaeian, A. B., & Kowsary, F. (2014). Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renewable and Sustainable Energy Reviews, 33, 636–644.

    Article  Google Scholar 

  • Sunil, K., Kundan, L., & Sumeet, S. (2014). Performance evaluation of a nanofluid based parabolic solar collector—An experimental study. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10, 2320–2400.

    Google Scholar 

  • Taylor, R. A., Phelan, P. E., Otanicar, T. P., Adrian, R., & Prasher, R. P. (2011a). Nanofluid optical property characterization towards efficient direct absorption solar collectors. Nanoscale Research Letters, 6(1), 225.

    Article  Google Scholar 

  • Taylor, R. A., Phelan, P. E., Otanicar, T. P., Walker, C. A., Nguyen, M., & Trimble, S. (2011b). Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy, 3, 023104.

    Article  Google Scholar 

  • Tiwari, A. K., Ghosh, P., & Sarkar, J. (2013). Solar water heating using nanofluids—a comprehensive overview and environmental impact analysis. International Journal of Emerging Technology and Advanced Engineering, 3, 221–224.

    Google Scholar 

  • Tong, Y., Kim, J., & Cho, H. (2015). Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renew Energy, 83, 463–473.

    Article  Google Scholar 

  • Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering, 131, 1–7.

    Article  Google Scholar 

  • Verma, V., & Kundan, L. (2013). Thermal performance evaluation of a direct absorption flat plate solar collector (DASC) using Al2O3–H2O based nanofluids. ISOR Journal of Mechanical and Civil Engineering, 6, 2320–3344.

    Google Scholar 

  • Vishwakarma, V., Singhal, N., Khullar, V., & Tyagi, H. (2012). Space cooling using the concept of nanofluids-based direct absorption solar collectors. In R. A. Taylor, T. P. Otanicar & A. Jain (Eds.), Proceedings of the ASME 2012 international mechanical engineering congress & exposition. Houston, Texas, USA, November 9–15, 2012.

    Google Scholar 

  • Wen, D., & Ding, Y. (2005). Experimental investigation into the pool boiling heat transfer of aqueous based-alumina nanofluids. Journal of Nanoparticle Research, 7, 265–274.

    Article  Google Scholar 

  • Wong, K. V., & De Leon, O. (2009). Applications of nanofluids: Current and future. Add in Mechanical Engineering. doi:10.1155/s11519659

  • Wongcharee, K., & Smith, E.-A. (2011). Enhancement of heat transfer using CuO/water nanofluid and twisted tape with the alternate axis. International Communications in Heat and Mass Transfer, 38, 742–748.

    Article  Google Scholar 

  • Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58–64.

    Article  Google Scholar 

  • Yousefi, T., Shojaeizadeh, E., Veysi, F., & Zinadini, S. (2012a). An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy, 86, 771–779.

    Article  Google Scholar 

  • Yousefi, T., Veisy, F., Shojaeizadeh, E., & Zinadini, S. (2012b). An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Experimental Thermal Fluid Science, 39, 207–212.

    Article  Google Scholar 

  • Yousefi, T., Veysi, F., Shojaeizadeh, E., & Zinadini, S. (2012c). An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy, 39, 293–298.

    Article  Google Scholar 

  • Zhang, L., Liu, J., He, G., Ye, Z., Fang, X., & Zhang, Z. (2014). Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Solar Energy Materials and Solar Cells, 130, 521–528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Raja Sekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sreenivasan, V., Raja Sekhar, Y., Sharma, K.V. (2017). Nanofluids for Enhanced Solar Thermal Energy Conversion. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation