The Spiritual Brain: Science and Religious Experience

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

Until the late eighteenth century, religions, particularly in the West, were defined by their sacred texts and dogmatic formulations. Friedrich Schleiermacher, in the late eighteenth century, was one of the first scholars that attempted to define “religion” by switching from a doctrinal emphasis to a more cognitive, visceral, or intuitive one. Schleiermacher defined religion as a “feeling of absolute dependence.” Since his day most attempts at a general definition of religion have relied heavily on emphasizing the intuitive, emotional, or visceral elements rather than the doctrinal ones. This shift has important implications for bringing a neuroscientific approach to the study of religion. However, this also results in a neuroscientific approach to both religious and non-religious spirituality and spiritual experiences. In fact, as the definitions have evolved, the distinction between spirituality and religiousness has become much more complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K (2001) Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory. Jpn J Pharmacol 86(1):18–22

    Article  CAS  Google Scholar 

  • Adair KC, Gilmore RL, Fennell EB, Gold M, Heilman KM (1995) Anosognosia during intracarotid barbiturate anaesthesia: unawareness or amnesia for weakness. Neurology 45:241–243

    Article  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    Article  CAS  Google Scholar 

  • Albin R, Greenamyre J (1992) Alternative excitotoxic hypotheses. Neurology 42:733–738

    Article  CAS  Google Scholar 

  • Amihai I, Kozhevnikov M (2015) The influence of Buddhist meditation traditions on the autonomic system and attention. Biomed Res Int 2015:731579. doi:10.1155/2015/731579

    Article  Google Scholar 

  • Armony JL, LeDoux JE (2000) In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, pp 1073–1074

    Google Scholar 

  • Bear DM, Fedio P (1977) Quantitative analysis of interictal behavior in temporal lobe epilepsy. Arch Neurol 34:454–467

    Article  CAS  Google Scholar 

  • Bharshankar JR, Mandape AD, Phatak MS, Bharshankar RN (2015) Autonomic functions in Raja-yoga meditators. Indian J Physiol Pharmacol 59(4):396–401

    Google Scholar 

  • Bucci DJ, Conley M, Gallagher M (1999) Thalamic and basal forebrain cholinergic connections of the rat posterior parietal cortex. Neuroreport 10:941–945

    Article  CAS  Google Scholar 

  • Buttle H (2015) Measuring a journey without goal: meditation, spirituality, and physiology. Biomed Res Int 2015:891671. doi:10.1155/2015/891671

    Article  Google Scholar 

  • Caminiti R, Chafee MV, Battaglia-Mayer A, Averbeck BB, Crowe DA, Georgopoulos AP (2010) Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective. Eur J Neurosci 31(12):2320–2340

    Article  Google Scholar 

  • Cornwall J, Phillipson OT (1988) Mediodorsal and reticular thalamic nuclei receive collateral axons from prefrontal cortex and laterodorsal tegmental nucleus in the rat. Neurosci Lett 88:121–126

    Article  CAS  Google Scholar 

  • d’Aquili EG, Newberg AB (1999) The mystical mind: probing the biology of religious experience. Fortress Press, Minneapolis

    Google Scholar 

  • Davies E, Keyon CJ, Fraser R (1985) The role of calcium ions in the mechanism of ACTH stimulation of cortisol synthesis. Steroids 45:557

    Article  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Ann Rev Neurosci 15:353–375

    Article  CAS  Google Scholar 

  • Desmedt A, Marighetto A, Richter-Levin G, Calandreau L (2015) Adaptive emotional memory: the key hippocampal-amygdalar interaction. Stress 18(3):297–308

    Article  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016

    Article  CAS  Google Scholar 

  • Dietrich A (2004) Neurocognitive mechanisms underlying the experience of flow. Conscious Cogn 13(4):746–761

    Article  Google Scholar 

  • Dollins AB, Lynch HJ, Wurtman RJ et al (1993) Effect of pharmacological daytime doses of melatonin on human mood and performance. Psychopharmacol 112:490–496

    Article  CAS  Google Scholar 

  • Engström M, Pihlsgård J, Lundberg P, Söderfeldt B (2010) Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation. J Altern Complement Med 16(12):1253–1258

    Article  Google Scholar 

  • Ferguson MA, Nielsen JA, King JB et al (2016) Reward, salience, and attentional networks are activated by religious experience in devout Mormons. Soc Neurosci:1–13

    Google Scholar 

  • Fernandez-Duque D, Posner MI (2001) Brain imaging of attentional networks in normal and pathological states. J Clin Exp Neuropsychol 23:74–93

    Article  CAS  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T (2016) Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state. Cogn Process 17(1):27–37. doi:10.1007/s10339-015-0743-4

    Article  Google Scholar 

  • Fish DR, Gloor P, Quesney FL, Olivier A (1993) Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Brain 116:397–414

    Article  Google Scholar 

  • Foote S (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95

    Article  CAS  Google Scholar 

  • Fox KC, Dixon ML, Nijeboer S et al (2016) Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neurosci Biobehav Rev 65: 208–228

    Article  Google Scholar 

  • Frith CD, Friston K, Liddle PF, Frackowiak RS (1991) Willed action and the prefrontal cortex in man. A study with PET. Proc R Soc Lond 244:241–246

    Article  CAS  Google Scholar 

  • Funke K, Eysel UT (1995) Possible enhancement of GABAergic inputs to cat dorsal lateral geniculate relay cells by serotonin. Neuroreport 6:474–476

    Article  CAS  Google Scholar 

  • Gellhorn E, Kiely WF (1972) Mystical states of consciousness: neurophysiological and clinical aspects. J Nerv Ment Dis 154:399–405

    Article  CAS  Google Scholar 

  • Grover S, Davuluri T, Chakrabarti S (2014) Religion, spirituality, and schizophrenia: a review. Indian J Psychol Med 36(2):119–124

    Article  Google Scholar 

  • Guglietti CL, Daskalakis ZJ, Radhu N, Fitzgerald PB, Ritvo P (2013) Meditation-related increases in GABAB modulated cortical inhibition. Brain Stimul 6(3):397–402

    Article  Google Scholar 

  • Herzog H, Lele VR, Kuwert T, Langen K-J, Kops ER, Feinendegen LE (1990–1991) Changed pattern of regional glucose metabolism during yoga meditative relaxation. Neuropsychobiology 23:182–187

    Article  CAS  Google Scholar 

  • Hugdahl K (1996) Cognitive influences on human autonomic nervous system function. Curr Op Neurobiol 6:252–258

    Article  CAS  Google Scholar 

  • Hui M, Zhang H, Ge R, Yao L, Long Z (2014) Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Neuropsychologia 62:111–123

    Article  Google Scholar 

  • Infante JR, Peran F, Martinez M et al (1998) ACTH and beta-endorphin in transcendental meditation. Physiol Behav 64:311–315

    Article  CAS  Google Scholar 

  • Infante JR, Torres-Avisbal M, Pinel P et al (2001) Catecholamine levels in practitioners of the transcendental meditation technique. Physiol Behav 72(1–2):141–146

    Article  CAS  Google Scholar 

  • Ingvar DH (1994) The will of the brain: cerebral correlates of willful acts. J Theor Biol 171:7–12

    Article  CAS  Google Scholar 

  • James W (2002) Varieties of religious experience. Routledge, London

    Google Scholar 

  • Janal M, Colt E, Clark W, Glusman M (1984) Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effects of naxalone. Pain 19:13–25

    Article  CAS  Google Scholar 

  • Jevning R, Wilson AF, Davidson JM (1978) Adrenocortical activity during meditation. Horm Behav 10:54–60

    Article  CAS  Google Scholar 

  • Jevning R, Wallace RK, Beidebach M (1992) The physiology of meditation: a review. A wakeful hypometabolic integrated response. Neurosci Biobehav Rev 16:415–424

    Article  CAS  Google Scholar 

  • Jevtovic-Todorovic V, Wozniak DF, Benshoff ND, Olney JW (2001) A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res 895:264–267

    Article  CAS  Google Scholar 

  • Joseph R (1990) Neuropsychology, neuropsychiatry, and behavioral neurology. Plenum Press, New York

    Book  Google Scholar 

  • Juckel GJ, Mendlin A, Jacobs BL (1999) Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: implications for electroconvulsive therapy and transcranial magnetic stimulation in depression. Neuropsychopharmacology 21:391–398

    Article  CAS  Google Scholar 

  • Karnath HO, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953

    Article  CAS  Google Scholar 

  • Kiss J, Kocsis K, Csaki A, Gorcs TJ, Halasz B (1997) Metabotropic glutamate receptor in GHRH and beta-endorphin neurons of the hypothalamic arcuate nucleus. Neuroreport 8:3703–3707

    Article  CAS  Google Scholar 

  • Kjaer TW, Bertelsen C, Piccini P, Brooks D, Alving J, Lou HC (2002) Increased dopamine tone during meditation-induced change of consciousness. Cogn Brain Res 13:255–259

    Article  CAS  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408(6810): 357–361

    Article  CAS  Google Scholar 

  • Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139(4):870–900

    Article  Google Scholar 

  • Lau WK, Leung MK, Chan CC, Wong SS, Lee TM (2015) Can the neural-cortisol association be moderated by experience-induced changes in awareness? Sci Rep 5:16620. doi:10.1038/srep16620

    Article  CAS  Google Scholar 

  • Lazar SW, Bush G, Gollub RL, Fricchione GL, Khalsa G, Benson H (2000) Functional brain map** of the relaxation response and meditation. Neuroreport 11:1581–1585

    Article  CAS  Google Scholar 

  • Livesey JH, Evans MJ, Mulligan R, Donald RA (2000) Interactions of CRH, AVP and cortisol in the secretion of ACTH from perifused equine anterior pituitary cells: “permissive” roles for cortisol and CRH. Endocrinol Res 26:445–463

    Article  CAS  Google Scholar 

  • Lynch JC (1980) The functional organization of posterior parietal association cortex. Behav Brain Sci 3:485–499

    Article  Google Scholar 

  • Manfridi A, Brambilla D, Mancia M (1999) Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. Am J Physiol 277:R1488–R1492

    CAS  Google Scholar 

  • Manuello J, Vercelli U, Nani A, Costa T, Cauda F (2016) Mindfulness meditation and consciousness: an integrative neuroscientific perspective. Conscious Cogn 40:67–78

    Article  Google Scholar 

  • Miller AM, Vedder LC, Law LM, Smith DM (2014) Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci 8:586. doi:10.3389/fnhum.2014.00586

    Article  Google Scholar 

  • Moller M (1992) Fine structure of pinealopetal innervation of the mammalian pineal gland. Microsc Res Tech 21:188–204

    Article  CAS  Google Scholar 

  • Monti JA, Christian ST (1981) Dimethyltryptamine: an endogenous hallucinogen. Int Rev Neurobiol 22:83–110

    Article  Google Scholar 

  • Mountcastle VB, Motter BC, Andersen RA (1980) Some further observations on the functional properties of neurons in the parietal lobe of the waking monkey. Brain Behav Sci 3:520–529

    Article  Google Scholar 

  • Newberg AB, Iversen J (2003) The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypothesis 61(2):282–291

    Article  CAS  Google Scholar 

  • Newberg AB, Waldman MR (2016) How enlightenment changes your brain. Penguin, New York

    Google Scholar 

  • Newberg AB, Alavi A, Baime M et al (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res Neuroimaging 106:113–122

    Article  CAS  Google Scholar 

  • Newberg AB, Amsterdam JD, Wintering N et al (2005) 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46(6):973–977

    CAS  Google Scholar 

  • Newberg A, Wintering NA, Morgan D, Waldman MR (2006) The measurement of regional cerebral blood flow during glossolalia: a preliminary SPECT study. Psychiatry Res Neuroimaging 148(1):67–71

    Article  Google Scholar 

  • Newman J, Grace AA (1999) Binding across time: the selective gating of frontal and hippocampal systems modulating working memory and attentional states. Consciousness Cog 8:196–212

    Article  CAS  Google Scholar 

  • O’Halloran JP, Jevning R, Wilson AF et al (1985) Hormonal control in a state of decreased activation: potentiation of arginine vasopressin secretion. Physiol Behav 35:591–595

    Article  Google Scholar 

  • Olds ME, Forbes JL (1981) The central basis of motivation, intracranial self-stimulation studies. Annu Rev Psychol 32:523–574

    Article  CAS  Google Scholar 

  • Panda R, Bharath RD, Upadhyay N, Mangalore S, Chennu S, Rao SL (2016) Temporal dynamics of the default mode network characterize meditation-induced alterations in consciousness. Front Hum Neurosci 10:372. doi:10.3389/fnhum.2016.00372

    Article  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  CAS  Google Scholar 

  • Peng CK, Mietus JE, Liu Y et al (1999) Exaggerates heart rate oscillations during two meditation techniques. Int J Cardiol 70:101–107

    Article  CAS  Google Scholar 

  • Peres JF, Moreira-Almeida A, Caixeta L, Leao F, Newberg A (2012) Neuroimaging during trance state: a contribution to the study of dissociation. PLoS One 7(11):e49360. doi:10.1371/journal.pone.0049360

    Article  CAS  Google Scholar 

  • Pietrowsky R, Braun D, Fehm HL, Pauschinger P, Born J (1991) Vasopressin and oxytocin do not influence early sensory processing but affect mood and activation in man. Peptides 12: 1385–1391

    Article  CAS  Google Scholar 

  • Poletti CE, Sujatanond M (1980) Evidence for a second hippocampal efferent pathway to hypothalamus and basal forebrain comparable to fornix system: a unit study in the monkey. J Neurophysiol 44:514–531

    Article  CAS  Google Scholar 

  • Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD (1998) A specific role for the thalamus in mediating the interaction attention and arousal in humans. J Neurosci 18: 8979–8989

    Article  CAS  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci:25–42

    Google Scholar 

  • Renaud LP (1996) CNS pathways mediating cardiovascular regulation of vasopressin. Clin Exp Pharmacol Physiol 23:157–160

    Article  CAS  Google Scholar 

  • Sanders H, Rennó-Costa C, Idiart M, Lisman J (2015) Grid cells and place cells: an integrated view of their navigational and memory function. Trends Neurosci 38(12):763–775

    Article  CAS  Google Scholar 

  • Saver JL, Rabin J (1997) The neural substrates of religious experience. J Neuropsychiatry Clin Neurosci 9:498–510

    Article  CAS  Google Scholar 

  • Shaji AV, Kulkarni SK (1998) Central nervous system depressant activities of melatonin in rats and mice. Indian J Exp Bio 36:257–263

    CAS  Google Scholar 

  • Sim MK, Tsoi WF (1992) The effects of centrally acting drugs on the EEG correlates of meditation. Biofeed Self Regul 17:215–220

    Article  CAS  Google Scholar 

  • Smith S (2013) Introduction to the NeuroImage special issue “map** the connectome”. NeuroImage 80:1

    Article  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ et al (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5. doi:10.3389/fnsys.2014.00005

    Article  CAS  Google Scholar 

  • Strassman RJ, Clifford R (1994) Dose-response study of N,N-Dimethyltrypamine in humans. I: neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51:85–97

    Article  CAS  Google Scholar 

  • Strassman RJ, Clifford R, Qualls R, Berg L (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-Dimethyltrypamine in humans. Biol Psychiatry 39:784–795

    Article  CAS  Google Scholar 

  • Streeter CC, Jensen JE, Perlmutter RM et al (2007) Yoga asana sessions increase brain GABA levels: a pilot study. J Altern Complement Med 13(4):419–426

    Article  Google Scholar 

  • Sudsuang R, Chentanez V, Veluvan K (1991) Effects of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume an reaction time. Physiol Behav 50:543–548

    Article  CAS  Google Scholar 

  • Tao J, Liu J, Egorova N et al (2016) Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after tai Chi Chuan practice in elder adults. Front Aging Neurosci 8:25. doi:10.3389/fnagi.2016.00025

    Article  CAS  Google Scholar 

  • Thomas AG, Vornov JJ, Olkowski JL, Merion AT, Slusher BS (2000) N-acetylated alpha-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. J Pharmacol Exp Ther 295:16–22

    CAS  Google Scholar 

  • Tooley GA, Armstrong SM, Norman TR, Sali A (2000) Acute increases in night-time plasma melatonin levels following a period of meditation. Biol Psychol 53:69–78

    Article  CAS  Google Scholar 

  • Travis F (2001) Autonomic and EEG patterns distinguish transcending from other experiences during transcendental meditation practice. Int J Psychophysiol 42:1–9

    Article  CAS  Google Scholar 

  • Van Bockstaele EJ, Aston-Jones G (1995) Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clin Exp Hypertens 17:153–165

    Article  Google Scholar 

  • Van Praag H, De Haan S (1980) Depression vulnerability and 5-Hydroxytryptophan prophylaxis. Psychiatry Res 3:75–83

    Article  Google Scholar 

  • Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443

    CAS  Google Scholar 

  • Vollenweider FX, Vontobel P, Hell D, Leenders KL (1999) 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man–a PET study with [11C]raclopride. Neuropsychopharmacology 20:424–433

    Article  CAS  Google Scholar 

  • Walton KG, Pugh ND, Gelderloos P, Macrae P (1995) Stress reduction and preventing hypertension: preliminary support for a psychoneuroendocrine mechanism. J Altern Complement Med 1:263–283

    Article  CAS  Google Scholar 

  • Waterhouse BD, Moises HC, Woodward DJ (1998) Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Res 790:33–44

    Article  CAS  Google Scholar 

  • Weingartner H, Gold P, Ballenger JC et al (1981) Effects of vasopressin on human memory functions. Science 211:601–603

    Article  CAS  Google Scholar 

  • Yadid G, Zangen A, Herzberg U, Nakash R, Sagen J (2000) Alterations in endogenous brain beta-endorphin release by adrenal medullary transplants in the spinal cord. Neuropsychopharmacology 23:709–716

    Article  CAS  Google Scholar 

  • Yoshida M, Sasa M, Takaori S (1984) Serotonin-mediated inhibition from dorsal raphe neurons nucleus of neurons in dorsal lateral geniculate and thalamic reticular nuclei. Brain Resol 290:95–105

    Article  CAS  Google Scholar 

  • Ziegler DR, Cass WA, Herman JP (1999) Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol 11:361–369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Newberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newberg, A. (2017). The Spiritual Brain: Science and Religious Experience. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_29

Download citation

Publish with us

Policies and ethics

Navigation