Nanostructured Materials

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production
  • 4405 Accesses

Abstract

With the development of photoelectrochemistry, the size and morphologies of photoelectrode materials have received more and more attention. The introduction of nanoscale syntheses of photoelectrochemical materials brings both advantages and disadvantages for the performance of photoelectrodes. In this chapter, we briefly introduce the morphologies of nanostructured materials as well as methods for their synthesis. Then the performance of some of these nanostructured photoelectrodes is compared with their bulk counterpart and other nanostructures of the same material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asoh H, Ono S (2007) Electrocrystallization in nanotechnology. Wiley-VCH, Berlin, pp 138–166

    Book  Google Scholar 

  • Banerjee S, Mohapatra SK, Misra M (2009) Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water. Chem Commun 46:7137–7139

    Google Scholar 

  • Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75

    Article  Google Scholar 

  • Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147:2456–2461

    Article  Google Scholar 

  • Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160

    Article  Google Scholar 

  • Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79:5566–5571

    Article  Google Scholar 

  • Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO3. J Appl Phys 48:1914–1920

    Article  Google Scholar 

  • Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27:7276–7284

    Article  Google Scholar 

  • Chakrapani V, Thangala J, Sunkara MK (2009) WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int J Hydrogen Energ 34:9050–9059

    Article  Google Scholar 

  • Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Article  Google Scholar 

  • Cho IS, Logar M, Lee CH, Cai L, Prinz FB, Zheng X (2013) Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett 14:24–31

    Article  Google Scholar 

  • Dai P, Li W, **e J, He Y, Thorne J, McMahon G, Zhan J, Wang D (2014) Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angew Chem Int Ed 53:13493–13497

    Article  Google Scholar 

  • Dai P, **e J, Mayer MT, Yang X, Zhan J, Wang D (2013) Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew Chem Int Ed 52:11119–11123

    Article  Google Scholar 

  • de Respinis M, De Temmerman G, Tanyeli I, van de Sanden MC, Doerner RP, Baldwin MJ, van de Krol R (2013) Efficient plasma route to nanostructure materials: case study on the use of m-WO3 for solar water splitting. ACS Appl Mater Interfaces 5:7621–7625

    Article  Google Scholar 

  • Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures heterostructures. Phys Rev Lett 33:827–830

    Google Scholar 

  • Duonghong D, Borgarello E, Graetzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690

    Article  Google Scholar 

  • Feng X, LaTempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA (2010) Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 10:948–952

    Article  Google Scholar 

  • Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  Google Scholar 

  • Fojtik A, Weller H, Koch U, Henglein A (1984) Photo-chemistry of colloidal metal sulfides 8. Photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Berich Bunsengesellsch Phys Chem 88:969–977

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  • Gao L, Cui Y, Wang J, Cavalli A, Standing A, Vu TTT, Verheijen MA, Haverkort JEM, Bakkers EPAM, Notten PHL (2014) Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett 14:3715–3719

    Article  Google Scholar 

  • Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 20:2791–2808

    Google Scholar 

  • Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  • Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457

    Article  Google Scholar 

  • Hagedorn K, Collins S, Maldonado S (2010) Preparation and photoelectrochemical activity of macroporous p-GaP(100). J Electrochem Soc 157:D588–D592

    Article  Google Scholar 

  • Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  Google Scholar 

  • Han J, Zong X, Zhou X, Li C (2015) Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Adv 5:10790–10794

    Article  Google Scholar 

  • Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous solution. Berich Bunsengesellsch Phys Chem 86:301–305

    Article  Google Scholar 

  • Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (lambda < 600 nm). Chem Lett 2002:736–737

    Article  Google Scholar 

  • Huang ZF, Pan L, Zou JJ, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6:14044–14063

    Article  Google Scholar 

  • Hwang YJ, Boukai A, Yang P (2008) High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett 9:410–415

    Article  Google Scholar 

  • Kamimura J, Bogdanoff P, Lähnemann J, Hauswald C, Geelhaar L, Fiechter S, Riechert H (2013) Photoelectrochemical properties of (In, Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy. J Am Chem Soc 135:10242–10245

    Article  Google Scholar 

  • Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721

    Article  Google Scholar 

  • Keis K, Vayssieres L, Lindquist S-E, Hagfeldt A (1999) Nanostructured ZnO electrodes for photovoltaic applications. Nanostruct Mater 12:487–490

    Article  Google Scholar 

  • Kim JK, Shin K, Cho SM, Lee T-W, Park JH (2011) Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energ Environ Sci 4:1465–1470

    Article  Google Scholar 

  • Kiwi J, Gratzel M (1987) Light-induced hydrogen formation and photo-uptake of oxygen in colloidal suspensions of [α]-Fe2O3. Faraday transactions 1: physical chemistry in condensed phases. J Chem Soc 83:1101–1108

    Google Scholar 

  • Kronawitter CX, Vayssieres L, Shen S, Guo L, Wheeler DA, Zhang JZ, Antoun BR, Mao SS (2011) A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ Environ Sci 4:3889–3899

    Article  Google Scholar 

  • Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53:229–230

    Article  Google Scholar 

  • Le Formal F, Grätzel M, Sivula K (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–1107

    Article  Google Scholar 

  • Li W, Li J, Wang X, Luo S, **ao J, Chen Q (2010) Visible light photoelectrochemical responsiveness of self-organized nanoporous WO3 films. Electrochim Acta 56:620–625

    Article  Google Scholar 

  • Li X, Tao F, Jiang Y, Xu Z (2007) 3-D ordered macroporous cuprous oxide: fabrication, optical, and photoelectrochemical properties. J Colloid Interface Sci 308:460–465

    Article  Google Scholar 

  • Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131

    Article  Google Scholar 

  • Liang Y, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115:17594–17598

    Article  Google Scholar 

  • Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011a) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215

    Article  Google Scholar 

  • Lin Y, Zhou S, Liu X, Sheehan S, Wang D (2009) TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting. J Am Chem Soc 131:2772–2773

    Article  Google Scholar 

  • Lin Y, Zhou S, Sheehan SW, Wang D (2011b) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401

    Article  Google Scholar 

  • Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125

    Article  Google Scholar 

  • Liu R, Lin Y, Chou L-Y, Sheehan SW, He W, Zhang F, Hou HJM, Wang D (2011) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem Int Ed 50:499–502

    Article  Google Scholar 

  • Ma GJ, Minegishi T, Yokoyama D, Kubota J, Domen K (2011) Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating. Chem Phys Lett 501:619–622

    Article  Google Scholar 

  • Mao A, Park N-G, Han GY, Park JH (2011a) Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Nanotechnology 22:175703

    Article  Google Scholar 

  • Mao A, Shin K, Kim JK, Wang DH, Han GY, Park JH (2011b) Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. ACS Appl Mater Interfaces 3:1852–1858

    Article  Google Scholar 

  • Mayer MT, Du C, Wang D (2012) Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J Am Chem Soc 134:12406–12409

    Article  Google Scholar 

  • Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energ Mat Sol Cells 90:2952–2959

    Article  Google Scholar 

  • Mohapatra SK, John SE, Banerjee S, Misra M (2009) Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 21:3048–3055

    Article  Google Scholar 

  • Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti − Fe − O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364

    Article  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2004) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195

    Article  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  Google Scholar 

  • Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi K-S, Grimes CA (2008) p-Type Cu − Ti − O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906–1911

    Article  Google Scholar 

  • Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11

    Article  Google Scholar 

  • O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    Article  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  Google Scholar 

  • Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Grätzel M (2012) Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energ Environ Sci 5:8673

    Article  Google Scholar 

  • Park JH, Kim S, Bard AJ (2005) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  • Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337

    Article  Google Scholar 

  • Peng K-Q, Wang X, Wu X-L, Lee S-T (2009) Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett 9:3704–3709

    Article  Google Scholar 

  • Pinaud BA, Chen Z, Abram DN, Jaramillo TF (2011) Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry. J Phys Chem C 115:11830–11838

    Article  Google Scholar 

  • Prakasam HE, Varghese OK, Paulose M, Mor GK, Grimes CA (2006) Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17:4285

    Article  Google Scholar 

  • Price MJ, Maldonado S (2009) Macroporous n-GaP in nonaqueous regenerative photoelectrochemical cells. J Phys Chem C 113:11988–11994

    Article  Google Scholar 

  • Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. P Combust Inst 34:2187–2195

    Article  Google Scholar 

  • Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun (Camb) 48:3833–3835

    Google Scholar 

  • Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66

    Article  Google Scholar 

  • Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649

    Article  Google Scholar 

  • Santori EA, Maiolo Iii JR, Bierman MJ, Strandwitz NC, Kelzenberg MD, Brunschwig BS, Atwater HA, Lewis NS (2012) Photoanodic behavior of vapor–liquid–solid-grown, lightly doped, crystalline Si microwire arrays. Energ Environ Sci 5:6867

    Article  Google Scholar 

  • Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192

    Article  Google Scholar 

  • Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  Google Scholar 

  • Shim H-S, Shinde VR, Kim JW, Gujar TP, Joo O-S, Kim HJ, Kim WB (2009) Diameter-tunable CdSe nanotubes from facile solution-based selenization of Cd(OH)2 nanowire bundles for photoelectrochemical cells. Chem Mater 21:1875–1883

    Article  Google Scholar 

  • Sim U, Jeong H-Y, Yang T-Y, Nam KT (2013) Nanostructural dependence of hydrogen production in silicon photocathodes. J Mater Chem A 1:5414–5422

    Article  Google Scholar 

  • Sivula K, Formal FL, Grätzel M (2009) WO3 − Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21:2862–2867

    Article  Google Scholar 

  • Sivula K, Le Formal F, Gratzel M (2011) Solar water splitting: progress using hematite α-Fe2 O3 photoelectrodes. ChemSusChem 4:432–449

    Article  Google Scholar 

  • Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2010) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208

    Article  Google Scholar 

  • Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933

    Article  Google Scholar 

  • Su J, Guo L, Yoriya S, Grimes CA (2009) Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting. Cryst Growth Des 10:856–861

    Article  Google Scholar 

  • Tacca A, Meda L, Marra G, Savoini A, Caramori S, Cristino V, Bignozzi CA, Gonzalez Pedro V, Boix PP, Gimenez S, Bisquert J (2012) Photoanodes based on nanostructured WO3 for water splitting. Chemphyschem 13:3025–3034

    Article  Google Scholar 

  • Tahir AA, Ehsan MA, Mazhar M, Wijayantha KGU, Zeller M, Hunter AD (2010) Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem Mater 22:5084–5092

    Article  Google Scholar 

  • Thangala J, Vaddiraju S, Bogale R, Thurman R, Powers T, Deb B, Sunkara MK (2007) Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3:890–896

    Article  Google Scholar 

  • Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6:7420–7426

    Article  Google Scholar 

  • Vayssieres L, Beermann N, Lindquist S-E, Hagfeldt A (2001) Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem Mater 13:233–235

    Article  Google Scholar 

  • Vincent T, Gross M, Dotan H, Rothschild A (2012) Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. Int J Hydrogen Energ 37:8102–8109

    Article  Google Scholar 

  • Wang D, Pierre A, Kibria MG, Cui K, Han X, Bevan KH, Guo H, Paradis S, Hakima A-R, Mi Z (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357

    Article  Google Scholar 

  • Wang G, Yang X, Qian F, Zhang JZ, Li Y (2010) Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092

    Article  Google Scholar 

  • Wang M, Jiang J, Shi J, Guo L (2013) CdS/CdSe core–shell nanorod arrays: energy level alignment and enhanced photoelectrochemical performance. ACS Appl Mater Interfaces 5:4021–4025

    Google Scholar 

  • Watcharenwong A, Chanmanee W, de Tacconi NR, Chenthamarakshan CR, Kajitvichyanukul P, Rajeshwar K (2008) Anodic growth of nanoporous WO3 films: morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J Electroanal Chem 612:112–120

    Article  Google Scholar 

  • Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  Google Scholar 

  • Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38:197–210

    Article  Google Scholar 

  • Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

    Article  Google Scholar 

  • Yokoi T, Sakuma J, Maeda K, Domen K, Tatsumi T, Kondo JN (2011) Preparation of a colloidal array of NaTaO3 nanoparticles via a confined space synthesis route and its photocatalytic application. Phys Chem Chem Phys 13:2563–2570

    Article  Google Scholar 

  • Young KJ, Gao Y, Brudvig GW (2011) Photocatalytic water oxidation using manganese compounds immobilized in nafion polymer membranes. Aust J Chem 64:1221–1228

    Article  Google Scholar 

  • Yuan G, Aruda K, Zhou S, Levine A, **e J, Wang D (2011) Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew Chem Int Ed 50:2334–2338

    Article  Google Scholar 

  • Yuan G, Zhao H, Liu X, Hasanali ZS, Zou Y, Levine A, Wang D (2009) Synthesis and photoelectrochemical study of vertically aligned silicon nanowire arrays. Angew Chem Int Ed 48:9680–9684

    Article  Google Scholar 

  • Zhang L, Reisner E, Baumberg JJ (2014) Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energ Environ Sci 7:1402–1408

    Article  Google Scholar 

  • Zhou M, Bao J, Bi W, Zeng Y, Zhu R, Tao M, **e Y (2012) Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts. ChemSusChem 5:1420–1425

    Article  Google Scholar 

  • Zhou M, Zhang S, Sun Y, Wu C, Wang M, **e Y (2010) C-oriented and {010} facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem Asian J 5:2515–2523

    Article  Google Scholar 

  • Zhou S, Liu X, Lin Y, Wang D (2009) Rational synthesis and structural characterizations of complex TiSi2 nanostructures. Chem Mater 21:1023–1027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thorne, J.E., He, Y., Wang, D. (2016). Nanostructured Materials. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation