Mycorrhizal Association: A Safeguard for Plant Pathogen

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Biological control refers to the potential application of introducing or inhabitant microorganisms to reduce the damage caused by one or more plant pathogens. A continuous interplay between ecosystem and its rhizospheric organisms brings the control of soilborne pathogens which are more difficult to manage. Since last two decades, biocontrol has been gaining considerable interest to maintain sustainable agriculture system. Mycorrhizae are among the most primeval, intimate, and vital association which colonize symbiotically through the roots of various vascular, nonvascular, and crop plants. The arbuscular mycorrhizal (AM) fungi develops a complex mutualistic association with host plant roots via various mechanisms. From the initiation of symbiosis till the formation of arbuscules and/or vesicles, a number of changes occur in plant metabolism, plant nutritional status, and plant resistance. The key indicators of AM fungi for an effective defense response are reduction in the infectivity of soilborne pathogens or suppression of pathogen metabolism or increase in plant’s tolerance toward pathogen. Proposed grounds for a healthier state of plants associated with AM fungi are attributed to (1) improvement in nutritional status of plants, (2) competition between mycorrhiza and pathogen for nutrition and infection sites, (3) modifications in root anatomy and morphology, (4) release of plant root exudates, (5) harboring microbial flora antagonistic to root pathogens, and (6) improved localized as well as systemic resistance in plants. The effective and prolonged mycorrhiza-induced resistance involves various phytohormones, secondary metabolites, pathogen-related proteins, and defense enzymes. Such activation leads to a primed state in plant, which allows quicker and mightier defense response against pathogens. This chapter provides an overview of the underlying mechanisms involved in mycorrhiza-induced disease resistance and priming in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008a) Arbuscular mycorrhizal fungi as potential biprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, The Netherlands, pp 61–98

    Chapter  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008b) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA, Wiemken A (2011) Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation, vol 6, Sustainable Agriculture Reviews. Springer, Dordrecht, The Netherlands, pp 263–292

    Chapter  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosyl flavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Amer MA, Abou-El-Seoud II (2008) Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani dam**-off disease of tomato. Commun Agric Appl Biol Sci 73:217–232

    CAS  PubMed  Google Scholar 

  • Aroca R, Ruíz-Lozano JM, Zamarreño A, Paz A, García-Mina JM, Pozo MJ, López Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Aguilar C, Bago B (1994) Physiological characteristics of the host plant promoting an undisturbed functioning of the mycorrhizal symbiosis. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel, Switzerland, pp 47–60

    Chapter  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 163–198

    Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizal metabolism and transport in AM fungi. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzergue C, Puech-Page V, Bécard G, Rochang SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1996) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, UK, pp 195–212

    Google Scholar 

  • Blee KA, Anderson AJ (2000) Defense responses in plants to arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St Paul, MN, pp 27–44

    Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, García‐Garrido JM (2000a) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 104:722–725

    Article  CAS  Google Scholar 

  • Blilou I, Ocampo JA, García‐Garrido JM (2000b) Induction of Ltp (Lipid transfer protein) and Pal (phenylalanine ammonia‐lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Bodker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    Article  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Esser K, Hock B (eds) The mycota IX. Springer, Berlin, pp 45–61

    Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, García-martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Caron M (1989) Potential use of mycorrhizae in control of soilborne diseases. Can J Plant Pathol 11:177–179

    Article  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • Chen X, Song F, Liu F, Tian C, Liu S, Xu H, Zhu X (2014) Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. ScientificWorldJournal 2014:956141

    PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Dassi B, Dumas‐Gaudot E, Asselin A, Richard C, Gianinazzi S (1996) Chitinase and β‐1,3‐glucanase isoforms expressed in pea roots inoculated with arbuscular mycorrhizal or pathogenic fungi. Eur J Plant Pathol 102:105–108

    Article  CAS  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dighton J (2014) Introduction: soils and their promotion of plant growth. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth. Springer, Dordrecht, The Netherlands, pp 1–26

    Chapter  Google Scholar 

  • Douds DD, Pfeffer PP, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kalpunik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The Netherlands, pp 107–129

    Chapter  Google Scholar 

  • Draper J (1997) Salicylate superoxide synthesis and cell suicide in plant defense. Trends Pharmacol Sci 2:162–165

    Article  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ernst O, Siri-Prieto G (2009) Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. Soil Tillage Res 105:260–268

    Article  Google Scholar 

  • Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Becard G, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falahian F, Ardebili ZO, Fahimi F, Khavarinejad R (2007) Effect of mycorrhizal fungi on some defense enzymes against Gaeumannomyces graminis in wheat. Pak J Biol Sci 10:2418–2422

    Article  CAS  PubMed  Google Scholar 

  • Fernandez I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo MJ (2014) Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. J Chem Ecol 40:791–803

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Aparicio M, Garcia-Garrido JM, Ocampo JA, Rubiales D (2010) Colonization of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268

    Article  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Sawers R (2011) Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 30:459–470

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  PubMed  Google Scholar 

  • Floss DS, Hause B, Lange PR, Küster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100

    Article  CAS  PubMed  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 110:E5025–E5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kuhnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation. Ann Bot 113:19–33

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Morcillo RJ, Rodriguez JA, Bote JA (2010) Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant Microbe Interact 23:651–664

    Article  CAS  Google Scholar 

  • Garcia‐Romera I, García‐Garrido JM, Ocampo JA (1991) Pectolytic enzymes in the vesicular‐arbuscular mycorrhizal fungus Glomus mosseae. FEMS Microbiol Lett 78:343–346

    Article  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121:233–242

    Article  Google Scholar 

  • Gopal S, Chandrasekaran M, Shagol C, Kim K, Sa T (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under tress conditions. Korean J Soil Sci Fert 45:582–592

    Article  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Casieri L, Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–837

    Article  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149–157

    Article  CAS  Google Scholar 

  • Harrison M, Dixon R (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    Article  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonate in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase, possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiti F, Kassami M, Meddich A, El Hadrami I (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. Albedinis. Phytopathology 156:641–646

    Article  CAS  Google Scholar 

  • Jalali BL, Jalali I (1991) Mycorrhiza in plant disease control. In: Arora K, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology. Dekker, New York, pp 131–154

    Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R (2008) Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. OnLine J Biol Sci 8:49–56

    Article  CAS  Google Scholar 

  • Karagiannidis N, Bletsos F, Stavropoulos N (2002) Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic 94:145–156

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandeenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Zablotowick RM, Tip** EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, The Netherlands, pp 315–326

    Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against verticillium-induced wilt in cotton. J Plant Prot Res 49:185–189

    Article  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Lambais MR (2000) Regulation of plant defence‐related genes in arbuscular mycorrhizae. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, MN, pp 45–59

    Google Scholar 

  • Lambais MR, Mehdy MC (1993) Suppression of endochitinase, β-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant Microbe Interact 6:75–83

    Article  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a Cu Zn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CS, Lee YJ, Jeun YC (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol 21:237–243

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Verhage A, Fernández I, García JM, Azcón-aguilar C, Flors V, Pozo MJ (2010a) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Raez JA, Flors V, García JM, Pozo MJ (2010b) AM symbiosis alters phenolic acid content in tomato roots. Plant Signal Behav 5:1138–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Raez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Lichtfouse E (ed) Agroecology and strategies for climate change. Springer, Dordrecht, The Netherlands, pp 109–133

    Chapter  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, Chichester

    Google Scholar 

  • Martín-Rodríguez JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM (2015) Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol Plant 154:66–81

    Article  PubMed  CAS  Google Scholar 

  • Matsubara Y, Tamura H, Harada T (1995) Growth enhancement and Verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. J Jpn Soc Hortic Sci 64:555–561

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Morandi D (1989) Effect of xenobiotics on endomycorrhizal infection and isoflavonoid accumulation in soybean roots. Plant Physiol Biochem 27:697–701

    CAS  Google Scholar 

  • Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    Article  CAS  Google Scholar 

  • Morcillo RJF, Ocampo JA, García‐Garrido JM (2012) Plant 9-lox oxylipin metabolism to arbuscular mycorrhiza. Plant Signal Behav 7:1584–1588

    Article  CAS  Google Scholar 

  • Mukerji K, Ciancio A (2007) Mycorrhizae in the integrated pest and disease management. In: Mukerji KG, Cianio A (eds) General concepts in integrated pest and disease management. Springer, Berlin, pp 245–266

    Chapter  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:48–488

    Google Scholar 

  • Péret B, Svistoonoff S, Laplaze L (2009) When plants socialize: symbioses and root development. In: Beeckman T (ed) Root development. Blackwell, Oxford, UK, pp 209–238

    Chapter  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unravelling mycorrhiza induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. J Exp Bot 49:1729–1739

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-gaudot E, Gianinazzi S, Barea JM, Azcón-aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-andrade J, García JM, Azcón-aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Barea JM, Gianinazzi S, Gianinazzi-Pearson V, Azcón-Aguilar C (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 123–135

    Chapter  Google Scholar 

  • Pozo MJ, Jung SC, Martínez-Medina A, López-Ráez JA, Azcón-Aguilar C, Barea JM (2013) Root allies: arbuscular mycorrhizal fungi help plants to cope with biotic stresses. In: Aroca R (ed) Symbiotic endopyhtes. Springer, Berlin, pp 289–307

    Chapter  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Y, Pérez E, Solórzano E, Meneses AR, Fernández F (2001) Peroxidase and polyphenoloxidase activities in tomato roots inoculated with Glomus clarum or Glomus fasciculatum. Cultiv Trop 22:11–16

    Google Scholar 

  • Rosendahl S, Dodd JC, Walker C (1994) Taxonomy and phylogeny of the Glomales. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, Switzerland, pp 1–12

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Salzer P, Boller T (2000) Elicitor‐induced reactions in mycorrhizae and their suppression. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, MN, pp 1–10

    Google Scholar 

  • Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza‐forming fungus Glomus mosseae. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli‐Lange R, Aeschbacher RA, Lang J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Mol Plant Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Bessis A, Pozo MJ (2014) Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 22:607–613

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Smith GS (1987) Interactions of nematodes with mycorrhizal fungi. In: Veech JA, Dickon DW (eds) Vistas on nematology. Society of Nematology, Hyattsville, pp 292–300

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbioses, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Facelli E, Suzanne P, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS (2012) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39:1036–1044

    Article  CAS  Google Scholar 

  • Spanu P, Bonfante-Fasolo P (1988) Cell-wall-bound peroxidase activity in roots of mycorrhizal Allium porrum. New Phytol 109:119–124

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Caron M, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Plant Pathol 16:187–194

    Article  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Sartorius M, Martínez de la Vega O, Délano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133:339–353

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Article  CAS  Google Scholar 

  • van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer, New York, pp 23–39

    Chapter  Google Scholar 

  • Vierheilig H, Knoblauch M, Juergensen K, van Bel AJE, Grundler FMW, Piché Y (2001) Imaging arbuscular mycorrhizal structures in living of Nicotiana tabacum by light, epifluorescence and confocal laser scanning microscopy. Can J Bot 79:231–237

    Google Scholar 

  • Vigo C, Norma JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus Glomus intraradices induces, a defence response in alfalfa roots. Plant Physiol 104:683–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volpin H, Phillips DA, Oken Y, Kapulnik Y (1995) Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol 104:1449–1454

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia 47:395–399

    Article  CAS  Google Scholar 

  • Xun F, **e B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22:598–608

    Article  CAS  PubMed  Google Scholar 

  • Younesi O, Moradi A, Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta Agric Slov 101:219–230

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. C L Patel chairman, Charutar Vidyamandal (CVM), Vallabh Vidyanagar Gujarat, and UGC, New Delhi, for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumati Bora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bora, M., Lokhandwala, A. (2016). Mycorrhizal Association: A Safeguard for Plant Pathogen. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_12

Download citation

Publish with us

Policies and ethics

Navigation