Theoretical and Applied Aspects of the Self-Organizing Maps

  • Conference paper
  • First Online:
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

Abstract

The Self-Organizing Map (SOM) is widely used, easy to implement, has nice properties for data mining by providing both clustering and visual representation. It acts as an extension of the k-means algorithm that preserves as much as possible the topological structure of the data. However, since its conception, the mathematical study of the SOM remains difficult and has be done only in very special cases. In WSOM 2005, Jean-Claude Fort presented the state of the art, the main remaining difficulties and the mathematical tools that can be used to obtain theoretical results on the SOM outcomes. These tools are mainly Markov chains, the theory of Ordinary Differential Equations, the theory of stability, etc. This article presents theoretical advances made since then. In addition, it reviews some of the many SOM algorithm variants which were defined to overcome the theoretical difficulties and/or adapt the algorithm to the processing of complex data such as time series, missing values in the data, nominal data, textual data, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EM is the standard algorithm for mixture models.

  2. 2.

    A kernel is a particular case of symmetric similarity such that K is a symmetric matrix, semi-definite positive with \(K(x_i,x_i)=0\) and satisfies the following positive constraint

    $$\forall \,M>0, \ \forall \,(x_i)_{i=1,\ldots ,M}\in \mathcal {X},\ \forall \,(\alpha _i)_{i=1,\ldots ,M},\qquad \sum _{i,j} \alpha _i\alpha _j K(x_i,x_j) \ge 0.$$

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: the generative topographic map**. Neural Comput. 10(1), 215–234 (1998)

    Article  Google Scholar 

  3. Bourgeois, N., Cottrell, M., Deruelle, B., Lamassé, S., Letrémy, P.: How to improve robustness in kohonen maps and display additional information in factorial analysis: application to text minin. Neurocomputing 147, 120–135 (2015a)

    Article  Google Scholar 

  4. Bourgeois, N., Cottrell, M., Lamassé, S., Olteanu, M.: Search for meaning through the study of co-occurrences in texts. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence, Proceedings of IWANN 2015, Part II. LNCS, vol. 9095, pp. 578–591. Springer, Switzerland (2015b)

    Google Scholar 

  5. Cheng, Y.: Convergence and ordering of Kohonen’s batch map. Neural Comput. 9, 1667–1676 (1997)

    Google Scholar 

  6. Conan-Guez, B., Rossi, F., El Golli, A.: Fast algorithm and implementation of dissimilarity self-organizing maps. Neural Netw. 19(6–7), 855–863 (2006)

    Article  MATH  Google Scholar 

  7. Cottrell, M., Fort, J.C.: Étude d’un processus d’auto-organisation. Annales de l’IHP, section B 23(1), 1–20 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Cottrell, M., Letrémy, P.: How to use the Kohonen algorithm to simultaneously analyse individuals in a survey. Neurocomputing 63, 193–207 (2005)

    Article  Google Scholar 

  9. Cottrell, M., Fort, J.C., Pagès, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119–138 (1998)

    Article  MATH  Google Scholar 

  10. Cottrell, M., Ibbou, S., Letrémy, P.: Som-based algorithms for qualitative variables. Neural Netw. 17, 1149–1167 (2004)

    Article  MATH  Google Scholar 

  11. Cottrell, M., Olteanu, M., Rossi, F., Rynkiewicz, J., Villa-Vialaneix, N.: Neural networks for complex data. Künstliche Intelligenz 26(2), 1–8 (2012). doi:10.1007/s13218-012-0207-2

    Google Scholar 

  12. de Bodt, E., Cottrell, M., Verleisen, M.: Statistical tools to assess the reliability of self-organizing maps. Neural Netw. 15(8–9), 967–978 (2002). doi:10.1016/S0893-6080(02)00071-0

    Google Scholar 

  13. El Golli, A., Conan-Guez, B., Rossi, F.: Self organizing map and symbolic data. J. Symb. Data Anal. 2(1), 11 (2004a)

    Google Scholar 

  14. El Golli, A., Conan-Guez, B., Rossi, F.: A self organizing map for dissimilarity data. In Banks, D., House, L., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications (Proceedings of IFCS 2004), pp. 61–68. IFCS, Chicago, Illinois (USA), Springer, 7 (2004b)

    Google Scholar 

  15. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: ordering, convergence properties and energy functions. Biol. Cybern. 67(1), 47–55 (1992a)

    Article  MATH  Google Scholar 

  16. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: stationnary states, metastability and convergence rate. Biol. Cybern. 67(1), 35–45 (1992b)

    Article  MATH  Google Scholar 

  17. Flanagan, J.A.: Self-organisation in Kohonen’s som. Neural Netw. 6(7), 1185–1197 (1996)

    Google Scholar 

  18. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  19. Fort, J.-C., Cottrell, M., Letrémy, P.: Stochastic on-line algorithm versus batch algorithm for quantization and self organizing maps. In: Neural Networks for Signal Processing XI, 2001, Proceedings of the 2001 IEEE Signal Processing Sociéty Workshop, pp. 43–52. IEEE, North Falmouth, MA, USA (2001)

    Google Scholar 

  20. Fort, J.-C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the batch Kohonen algorithm. In Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2002), pp. 223–230. d-side publications, Bruges, Belgium (2002)

    Google Scholar 

  21. Fort, J.C.: SOM’s mathematics. Neural Netw. 19(6–7), 812–816 (2006)

    Article  MATH  Google Scholar 

  22. Fort, J.C., Pagès, G.: About the kohonen algorithm: strong or weak self-organisation. Neural Netw. 9(5), 773–785 (1995)

    Article  Google Scholar 

  23. Goldfarb, L.: A unified approach to pattern recognition. Pattern Recognit. 17(5), 575–582 (1984). doi:10.1016/0031-3203(84)90056-6

    Article  MATH  MathSciNet  Google Scholar 

  24. Graepel, T., Burger, M., Obermayer, K.: Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21, 173–190 (1998)

    Article  MATH  Google Scholar 

  25. Hammer, B., Hasenfuss, A.: Topographic map** of large dissimilarity data sets. Neural Comput. 22(9), 2229–2284 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hammer, B., Hasenfuss, A., Rossi, F., Strickert, M.: Topographic processing of relational data. In: Group, Bielefeld University Neuroinformatics (ed.) Proceedings of the 6th Workshop on Self-Organizing Maps (WSOM 07). Bielefeld, Germany, September 2007

    Google Scholar 

  27. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–315. Elsevier, Amsterdam (1999). http://www.snn.ru.nl/reports/Heskes.wsom.ps.gz

    Google Scholar 

  28. Heskes, Tom: Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans. Neural Netw. 12(6), 1299–1305 (2001)

    Article  Google Scholar 

  29. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  30. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: Websom—self-organizing maps of document collections. Neurocomputing 21(1), 101–117 (1998a)

    Article  MATH  Google Scholar 

  31. Kaski, S., Jari, K., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981–1997. Neural Comput. Surv. 1(3&4), 1–176 (1998b)

    Google Scholar 

  32. Kohohen, T., Somervuo, P.J.: Self-organizing maps of symbol strings. Neurocomputing 21, 19–30 (1998)

    Article  Google Scholar 

  33. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982a)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, 135–140 (1982b)

    Google Scholar 

  35. Kohonen, T.: Median strings. Pattern Recognit. Lett. 3, 309–313 (1985)

    Article  Google Scholar 

  36. Kohonen, T.: Self-organization and Associative Memory. Springer, Berlin (1989)

    Book  Google Scholar 

  37. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Science, vol. 30. Springer, Berlin (1995)

    Google Scholar 

  38. Kohonen, T.: Self-organizing maps of symbol strings, Technical Report a42, Laboratory of computer and information science, Helsinki University of technoligy, Finland (1996)

    Google Scholar 

  39. Kohonen, T.: Comparison of som point densities based on different criteria. Neural Comput. 11, 2081–2095 (1999)

    Article  Google Scholar 

  40. Kohonen, T.: Self-Organizing Maps, vol. 30, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  41. Kohonen, T.: Essentials of self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  42. Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map. Unigrafia Oy, Helsinki (2014)

    Google Scholar 

  43. Kohonen, T., Somervuo, P.J.: How to make large self-organizing maps for nonvectorial data. Neural Netw. 15(8), 945–952 (2002)

    Article  Google Scholar 

  44. Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International Conference on knowledge-based Intelligence Engineering Systems and Applied Technologies, pp. 317–320 (2000)

    Google Scholar 

  45. McLachlan, G., Peel. D.: Finite mixture models. Wiley (2004)

    Google Scholar 

  46. Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput. Surv. 3, 1–156 (2003)

    Google Scholar 

  47. Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocomputing 147, 15–30 (2015). doi:10.1016/j.neucom.2013.11.047

    Article  Google Scholar 

  48. Pollard, D., et al.: Strong consistency of \(k\)-means clustering. Ann. Stat. 9(1), 135–140 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ritter, H., Schulten, K.: On the stationary state of Kohonen’s self-organizing sensory map**. Biol. Cybern. 54, 99–106 (1986)

    Google Scholar 

  50. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps, an Introduction. Addison-Wesley (1992)

    Google Scholar 

  51. Rossi, F.: How many dissimilarity/kernel self organizing map variants do we need? In Villmann, T., Schleif, F.M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization (Proceedings of WSOM 2014), Advances in Intelligent Systems and Computing, vol. 295, pages 3–23. Mittweida, Germany, Springer, Berlin (2014). doi:10.1007/978-3-319-07695-9_1

    Google Scholar 

  52. Sadeghi, A.: Convergence in distribution of the multi-dimensional Kohonen algorithm. J. of Appl. Probab. 38(1), 136–151 (2001)

    Google Scholar 

  53. Verbeek, J.J., Vlassi, N., Kröse, B.J.A.: Self-organizing mixture models. Neurocomputing 63, 99–123 (2005)

    Article  Google Scholar 

  54. Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM: 2007) Bielefield, Germany, 2007. Bielefield University, Neuroinformatics Group (2007). ISBN 978-3-00-022473-7. doi:10.2390/biecoll-wsom2007-139

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie Cottrell or Nathalie Villa-Vialaneix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cottrell, M., Olteanu, M., Rossi, F., Villa-Vialaneix, N. (2016). Theoretical and Applied Aspects of the Self-Organizing Maps. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation