The Case of Lipid II: The Achilles’ Heel of Bacteria

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

This chapter centers on the crucial role that lipid II plays on the bacterial cell wall and its putative role as the Achilles’ heel of pathogenic bacteria. Lipid II is an essential molecule for bacterial survival and biomolecules targeting this compound could interrupt the bacterial cell wall synthesis, hence causing bacterial lysis. We will concentrate here on several lipid II-acting lantibiotics, such as telavancin, vancomycin, and plusbacin. Additionally, human defensins and moenomycins will be also mentioned, as they constitute putative future biomolecules to fight bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66:2565–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose AM (1954) Observations on the acute toxicity of cinnamycin, a polypeptide antibiotic. Antibiot Chemother (Northfield III) 4:1242–12244

    CAS  Google Scholar 

  • Appleyard AN, Choi S, Read DM, Lightfoot A, Boakes S, Hoffmann A, Chopra I, Bierbaum G, Rudd BA, Dawson MJ, Cortes J (2009) Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol 16:490–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai M, Nakayama R, Yoshida K, Takeuchi M, Teramoto S, Torikata A (1977) Pholipomycin, a new member of phosphoglycolipid antibiotics. II. Physico-chemical properties and comparison with other members of this family of antibiotics. J Antibiot (Tokyo) 30:1055–1059

    Article  CAS  Google Scholar 

  • Argüelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS ONE 8:e83037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arioli V, Berti M, Silvestri LG (1976) Gardimycin, a new antibiotic from Actinoplanes. III. Biological properties. J Antibiot (Tokyo) 29(5):511–515

    Article  CAS  Google Scholar 

  • Asaduzzaman SM, Nagao J, Iida H, Zendo T, Nakayama J, Sonomoto K (2009) Nukacin ISK-1, a bacteriostatic lantibiotic. Antimicrob Agents Chemother 53:3595–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aso Y, Sashihara T, Nagao J, Kanemasa Y, Koga H, Hashimoto T, Higuchi T, Adachi A, Nomiyama H, Ishizaki A, Nakayama J, Sonomoto K (2004a) Characterization of a gene cluster of Staphylococcus warneri ISK-1 encoding the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. Biosci Biotechnol Biochem 68:1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Aso Y, Nagao J, Koga H, Okuda K, Kanemasa Y, Sashihara T, Nakayama J, Sonomoto K (2004b) Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. J Biosci Bioeng 98:429–436

    Article  CAS  PubMed  Google Scholar 

  • Aso Y, Koga H, Sashihara T, Nagao J, Kanemasa Y, Nakayama J, Sonomoto K (2005) Description of complete DNA sequence of two plasmids from the nukacin ISK-1 producer, Staphylococcus warneri ISK-1. Plasmid 53:164–178

    Article  CAS  PubMed  Google Scholar 

  • Barr K, Rick PD (1987) Biosynthesis of Enterobacterial Common Antigen in Escherichia coli. In vitro synthesis of lipid-linked intermediates. J Biol Chem 262:7142–7150

    CAS  PubMed  Google Scholar 

  • Barr K, Ward S, Meier-Dieter U, Mayer H, Rick PD (1988) Characterization of an Escherichia coli rff mutant defective in transfer of N-acetylmannosaminuronic acid (ManNAcA) from UDP-ManNAcA to a lipid-linked intermediate involved in enterobacterial common antigen synthesis. J Bacteriol 170:228–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr K, Nunes-Edwards P, Rick PD (1989) In vitro synthesis of a lipid-linked trisaccharide involved in synthesis of enterobacterial common antigen. J Bacteriol 171:1326–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict RG, Dvonch W, Shotwell OL, Pridham TG, Lindenfelser LA (1952) Cinnomycin, an antibiotic from Streptomyces cinnamoneus nov. sp. Antibiot Chemother 2:591–594

    CAS  Google Scholar 

  • Bevins CL (2006) Paneth cell defensins: key effector molecules of innate immunity. Biochem Soc Trans 34:263–266

    Article  CAS  PubMed  Google Scholar 

  • Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18

    Article  CAS  PubMed  Google Scholar 

  • Boakes S, Cortés J, Appleyard AN, Rudd BA, Dawson MJ (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 72:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Boakes S, Ayala T, Herman M, Appleyard AN, Dawson MJ, Cortés J (2012) Generation of an actagardine A variant library through saturation mutagenesis. Appl Microbiol Biotechnol 95:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Böttiger T, Schneider T, Martínez B, Sahl HG, Wiedemann I (2009) Influence of Ca++ ions on the activity of lantibiotics containing a mersacidin-like lipid II binding motif. Appl Environ Microbiol 75:4427–4434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouhss A, Al-Dabbagh B, Vincent M, Odaert B, Aumont-Nicaise M, Bressolier P, Desmadril M, Mengin-Lecreulx D, Urdaci MC, Gallay J (2009) Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall. Biophys J 97:1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressollier P, Brugo MA, Robineau P, Schmitter JM, Sofeir M, Urdaci MC, Verneuil B (2007) Peptide compound with biological activity, its preparation and application. WO 2007113691

    Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discovery 5:321–323

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    Article  CAS  PubMed  Google Scholar 

  • Brötz H, Bierbaum G, Markus A, Molitor E, Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39:714–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Brötz H, Bierbaum G, Reynolds PE, Sahl HG (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246:193–199

    Article  PubMed  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  PubMed Central  Google Scholar 

  • Carroll J, Draper LA, O’Connor PM, Coffey A, Hill C, Ross RP, Cotter PD, O’Mahony J (2010) Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int J Antimicrob Agents 36:132–136

    Article  CAS  PubMed  Google Scholar 

  • Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L, Feroggio M, Ciciliato I, Corti E, Candiani G, Marinelli F, Selva E (2007) A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46:5884–5895

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus, fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832–838

    Article  CAS  Google Scholar 

  • Cheng TJ, Wu YT, Yang ST, Lo KH, Chen SK, Chen YH, Huang WI, Yuan CH, Guo CW, Huang LY, Chen KT, Shih HW, Cheng YS, Cheng WC, Wong CH (2010) High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg Med Chem 18:8512–8529

    Article  CAS  PubMed  Google Scholar 

  • Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Düsterhus S, Kötter P, Güntert P, Entian KD, Wöhnert J (2012) The First structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 287:35286–35298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coronelli C, Tamoni G, Lancini GC (1976) Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot (Tokyo) 29:507–510

    Article  CAS  Google Scholar 

  • Cotter PD, O’Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP (2005) Posttranslational conversion of l-serines to d-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc Natl Acad Sci USA 102:18584–18589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Deegan LH, Lawton EM, Draper LA, O’Connor PM, Hill C, Ross RP (2006) Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 62:735–747

    Article  CAS  PubMed  Google Scholar 

  • Crispie F, Flynn J, Ross RP, Hill C, Meaney WJ (2004) Update on the development of a novel dry cow therapy using a bismuth-based intramammary teat seal in combination with the bacteriocin lacticin 3147. Ir Vet J 57:652–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabard J, Bridonneau C, Phillipe C, Anglade P, Molle D, Nardi M, Ladiré M, Girardin H, Marcille F, Gomez A, Fons M (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 67:4111–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ (1998) Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. J Bacteriol 180:5875–5884

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derouaux A, Turk S, Olrichs NK, Gobec S, Breukink E, Amoroso A, Offant J, Bostock J, Mariner K, Chopra I, Vernet T, Zervosen A, Joris B, Frère JM, Nguyen-Distèche M, Terrak M (2011) Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochem Pharmacol 81:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, O’Connor PM, Cotter PD, Ross RP, Hill C (2011) Impact of the broad-spectrum antimicrobial peptide, lacticin 3147, on Streptococcus mutans growing in a biofilm and in human saliva. J Appl Microbiol 111:1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Draper LA, Cotter PD, Hill C, Ross RP (2013) The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiol 13:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drider D, Rebufatt S (eds) (2011) Prokaryotic Antibacterial Peptides. Springer, Germany

    Google Scholar 

  • Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M (2014) Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem. pii: jbc.M114.599878

    Google Scholar 

  • Field D, Molloy EM, Iancu C, Draper LA, O’ Connor PM, Cotter PD, Hill C, Ross RP (2013) Saturation mutagenesis of selected residues of the α-peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microb Biotechnol 6:564–575

    Google Scholar 

  • Fredenhagen A, Fendrich G, Märki F, Märki W, Gruner J, Raschdorf F, Peter HH (1990) Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin. J Antibiot (Tokyo) 43:1403–1412

    Article  CAS  Google Scholar 

  • Ganguli BN, Chatterjee S, Chatterjee S, Kogler H, Fehlhaber HW, Kiesel N, Blumbach J (1989) Program abstract continued 29th interscience conference on antimicrobial agents and chemotheraphy, Abstract 413

    Google Scholar 

  • Gardiner GE, Rea MC, O’Riordan B, O’Connor P, Morgan SM, Lawlor PG, Lynch PB, Cronin M, Ross RP, Hill C (2007) Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl Environ Microbiol 73:7103–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgalaki M, Papadimitriou K, Anastasiou R, Pot B, Van Driessche G, Devreese B, Tsakalidou E (2013) Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Food Microbiol 33:124–130

    Article  CAS  PubMed  Google Scholar 

  • Goldman RC, Baizman ER, Branstrom AA, Longley CB (2000) Differential antibacterial activity of moenomycin analogues on gram-positive bacteria. Bioorg Med Chem Lett 10:2251–2254

    Article  CAS  PubMed  Google Scholar 

  • Gomez A, Ladiré M, Marcille F, Fons M (2002) Trypsin mediates growth phase-dependent transcriptional regulation of genes involved in biosynthesis of ruminococcin A, a lantibiotic produced by a Ruminococcus gnavus strain from a human intestinal microbiota. J Bacteriol 184:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González B, Arca P, Mayo B, Suárez JE (1994) Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol 60:2158–2163

    PubMed  PubMed Central  Google Scholar 

  • González B, Glaasker E, Kunji E, Driessen A, Suarez JE, Konings WN (1996) Bactericidal mode of action of plantaricin C. Appl Environ Microbiol 62:2701–2709

    PubMed  PubMed Central  Google Scholar 

  • Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW, Molina L, Döring G, Ratjen F (2007) Inhalation of Moli 1901 in patients with cystic fibrosis. Chest 131:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Grinter R, Roszak AW, Cogdell RJ, Milner JJ, Walker D (2012) The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 287:38876–38888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross E, Brown JH (1976) Peptides with α,β-unsaturated and thioether amino acids, duramycin. In: Loffet A (ed) Peptides, Editions de l’Universite de Bruxelles, Brüssel, pp 183–190

    Google Scholar 

  • Guder A, Schmitter T, Wiedemann I, Sahl HG, Bierbaum G (2002) Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Environ Microbiol 68:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halimi B, Dortu C, Arguelles-Arias A, Thonart P, Joris B, Fickers P (2010) Antilisterial activity on poultry meat of amylolysin a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Prot 2:120–125

    Article  CAS  Google Scholar 

  • Halliday J, McKeveney D, Muldoon C, Rajaratnam P, Meutermans W (2006) Targeting the forgotten transglycosylases. Biochem Pharmacol 71:957–967

    Article  CAS  PubMed  Google Scholar 

  • Hao K, He P, Blom J, Rueckert C, Mao Z, Wu Y, He Y, Borriss R (2012) The genome of plant growth-promoting Bacillus amyloliquefaciens subsp. plantarum strain YAU B9601-Y2 contains a gene cluster for mersacidin synthesis. J Bacteriol 194:3264–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Williamson RT, Shen B, Graziani EI, Yang HY, Sakya SM, Petersen PJ, Carter GT (2002) Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124:9729–9736

    Article  CAS  PubMed  Google Scholar 

  • Herzner AM, Dischinger J, Szekat C, Josten M, Schmitz S, Yakéléba A, Reinartz R, Jansen A, Sahl HG, Piel J, Bierbaum G (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6:e22389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey RM, Twomey DP, Ross RP, Hill C (2001) Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl Environ Microbiol 67:2853–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE Jr, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    Article  CAS  PubMed  Google Scholar 

  • Holtsmark I, Mantzilas D, Eijsink VGH, Brurberg MB (2006) Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Appl Environ Microbiol 72:5814–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlihan AJ, Russell JB (2006) Factors affecting the activity of bovicin HC5, a bacteriocin from Streptococcus bovis HC5: release, stability and binding to target bacteria. J Appl Microbiol 100:168–174

    Article  CAS  PubMed  Google Scholar 

  • Hsu ST, Breukink E, Bierbaum G, Sahl HG, de Kruijff B, Kaptein R, van Nuland NA, Bonvin AM (2003) NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem 278:13110–13117

    Article  CAS  PubMed  Google Scholar 

  • Huber G, Schacht U, Weidenmüller HL, Schmidt-Thomé J, Duphorn J, Tschesche R (1965) Meonomycin, a new antibiotic. II. Characterization and chemistry. Antimicrob Agents Chemother (Bethesda) 5:737–742

    CAS  Google Scholar 

  • Huber G (1979) Moenomycin and related phosphorus-containing antibiotics. In: Hahn FE (ed) Antibiotics V/I, mechanism of action of antibacterial agents. Springer, Berlin, pp 135–153

    Chapter  Google Scholar 

  • Huffaker TC, Robbins PW (1982) Temperature sensitive yeast mutants deficient in asparagine linked glycosylation. J Biol Chem 257:3203–3210

    CAS  PubMed  Google Scholar 

  • Islam MR, Nagao J, Zendo T, Sonomoto K (2012a) Antimicrobial mechanism of lantibiotics. Biochem Soc Trans 40:1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Nishie M, Nagao J, Zendo T, Keller S, Nakayama J, Kohda D, Sahl HG, Sonomoto K (2012b) Ring A of nukacin ISK-1: a lipid II-binding motif for type-A(II) lantibiotic. J Am Chem Soc 134:3687–3690

    Article  CAS  PubMed  Google Scholar 

  • Jansen EF, Hirschmann DJ (1944) Subtilin, an antibacterial product of Bacillus subtilis: culturing conditions and properties. Arch Biochem 4:297–304

    CAS  Google Scholar 

  • Kettenring JK, Malabarba A, Vékey K, Cavalleri B (1990) Sequence determination of actagardine, a novel lantibiotic, by homonuclear 2D NMR spectroscopy. J Antibiot (Tokyo) 43:1082–1088

    Article  CAS  Google Scholar 

  • Kim SJ, Singh M, Wohlrab A, Yu TY, Patti GJ, O’Connor RD, VanNieuwenhze M, Schaefer J (2013) The isotridecanyl side chain of plusbacin-A3 is essential for the transglycosylase inhibition of peptidoglycan biosynthesis. Biochemistry 52:1973–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King A, Phillips I, Kaniga K (2004) Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J Antimicrob Chemother 53:797–803

    Article  CAS  PubMed  Google Scholar 

  • Kingston AW, Liao X, Helmann JD (2013) Contributions of the σW, σM and σX regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 90:502–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653

    Article  CAS  PubMed  Google Scholar 

  • Kuo SC, Lampen JO (1974) Tunicamycin, inhibitor of yeast glycoprotein synthesis. Biochem Biophys Res Commun 58:287–295

    Article  CAS  PubMed  Google Scholar 

  • Kurz M, Guba W, Vértesy L (1998) Three-dimensional structure of moenomycin A–a potent inhibitor of penicillin-binding protein 1b. Eur J Biochem 252:500–507

    Article  CAS  PubMed  Google Scholar 

  • Laohavaleeson S, Kuti JL, Nicolau DP (2007) Telavancin: a novel lipoglycopeptide for serious gram-positive infections. Expert Opin Investig Drugs 16:347–357

    Article  CAS  PubMed  Google Scholar 

  • Lawton EM, Cotter PD, Hill C, Ross RP (2007a) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 67:64–71

    Article  CAS  Google Scholar 

  • Lawton EM, Ross RP, Hill C, Cotter PD (2007b) Two-peptide lantibiotics: a medical perspective. Mini Rev Med Chem 7:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter MR, Adams SM, Bazzini B, Fatheree PR, Karr DE, Krause KM, Lam BM, Linsell MS, Nodwell MB, Pace JL, Quast K, Shaw JP, Soriano E, Trapp SG, Villena JD, Wu TX, Christensen BG, Judice JK (2004) Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot (Tokyo) 57:326–336

    Article  CAS  Google Scholar 

  • Lehle L, Tanner W (1976) The specific site of the tunicamycin inhibition in the formation of dolichol-bound Nacetylglucosamine derivatives. FEBS Lett 71:167–170

    Article  CAS  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Lindenfelser LA, Pridham TG, Kemp CE (1959) Antibiotics against plant diseases. V. Activity of cinnamycin against selected microorganisms. Antibiot Chemother 9:690–695

    CAS  Google Scholar 

  • Lunde CS, Hartouni SR, Janc JW, Mammen M, Humphrey PP, Benton BM (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53:3375–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffioli SI, Potenza D, Vasile F, De Matteo M, Sosio M, Marsiglia B, Rizzo V, Scolastico C, Donadio S (2009) Structure revision of the lantibiotic 97518. J Nat Prod 72:605–607

    Article  CAS  PubMed  Google Scholar 

  • Majer F, Schmid DG, Altena K, Bierbaum G, Kupke T (2002) The flavoprotein MrsD catalyzes the oxidative decarboxylation reaction involved in formation of the peptidoglycan biosynthesis inhibitor mersacidin. J Bacteriol 184:1234–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani HC, Russell JB (2003) Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5. Int J Food Microbiol 89:77–83

    Article  CAS  PubMed  Google Scholar 

  • Mantovani HC, Russell JB (2008) Bovicin HC5, a lantibiotic produced by Streptococcus bovis HC5, catalyzes the efflux of intracellular potassium but not ATP. Antimicrob Agents Chemother 52:2247–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani HC, Hu H, Worobo RW, Russell JB (2002) Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:3347–3352

    Article  CAS  PubMed  Google Scholar 

  • Märki F, Hänni E, Fredenhagen A, van Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C and cinamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42:2027–2035

    Article  PubMed  Google Scholar 

  • Martin NI, Breukink E (2007) Expanding role of lipid II as a target for lantibiotics. Future Microbiol 2:513–525

    Article  CAS  PubMed  Google Scholar 

  • Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43:3049–3056

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cuesta MC, Requena T, Peláez C (2006) Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. Int J Food Microbiol 109:198–204

    Article  PubMed  CAS  Google Scholar 

  • Mattick AT, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2:5–8

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (1999) Inhibition of Listeria monocytogenes in cottage cheese manufactured with a lacticin 3147-producing starter culture. J Appl Microbiol 86:251–256

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (2000) Identification and overexpression of ltnl, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147. Microbiology 146:129–138

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe O, O’Keeffe T, Hill C, Ross RP (2001) Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol Microbiol 39:982–993

    Article  CAS  PubMed  Google Scholar 

  • McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103:17243–17248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Dieter U, Starman R, Barr K, Mayer H, Rick PD (1990) Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J Biol Chem 265:13490–13497

    CAS  PubMed  Google Scholar 

  • Meng FC, Chen KT, Huang LY, Shih HW, Chang HH, Nien FY, Liang PH, Cheng TJ, Wong CH, Cheng WC (2011) Total synthesis of polyprenyl N-glycolyl lipid II as a mycobacterial transglycosylase substrate. Org Lett 13:5306–5309

    Article  CAS  PubMed  Google Scholar 

  • Molitor E, Kluczny C, Brötz H, Bierbaum G, Jack R, Sahl HG (1996) Effects of the lantibiotic mersacidin on the morphology of staphylococci. Zentralbl Bakteriol 284:318–328

    Article  CAS  PubMed  Google Scholar 

  • Morgan SM, Ross RP, Beresford T, Hill C (2000) Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J Appl Microbiol 88:414–420

    Article  CAS  PubMed  Google Scholar 

  • Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8:e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nannini EC, Stryjewski ME, Corey GR (2010) Telavancin’s interactions with the bacterial cell membrane. Future Microbiol 5:355–358

    Article  CAS  PubMed  Google Scholar 

  • Niu WW, Neu HC (1991) Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin. Antimicrob Agents Chemother 35:998–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor EB, O’Riordan B, Morgan SM, Whelton H, O’Mullane DM, Ross RP, Hill C (2006) A lacticin 3147 enriched food ingredient reduces Streptococcus mutans isolated from the human oral cavity in saliva. J Appl Microbiol 100:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Ökesli A, Cooper LE, Fogle EJ, van der Donk WA (2011) Nine post-translational modifications during the biosynthesis of cinnamycin. J Am Chem Soc 133:13753–13760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oman TJ, van der Donk WA (2009) Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 4:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oman TJ, Lupoli TJ, Wang TS, Kahne D, Walker S, van der Donk WA (2011) Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J Am Chem Soc 133:17544–17547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Walker S (2010) Moenomycin family antibiotics: chemical synthesis, biosynthesis, biological activity. Nat Prod Rep 27:1594–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan L, Morgan SM, Ross RP, Hill C (2002) Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552. J Dairy Sci 85:2130–2140

    Article  PubMed  Google Scholar 

  • Pace JL, Judice JK (2005) Telavancin (Theravance). Curr Opin Investig Drugs 6:216–225

    CAS  PubMed  Google Scholar 

  • Pace JL, Yang G (2006) Glycopeptides: Update on an old successful antibiotic class. Biochem Pharmacol 71:968–980

    Article  CAS  PubMed  Google Scholar 

  • Paiva AD, Breukink E, Mantovani HC (2011) Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva AD, Irving N, Breukink E, Mantovani HC (2012a) Interaction with lipid II induces conformational changes in bovicin HC5 structure. Antimicrob Agents Chemother 56:4586–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC (2012b) Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 158:2851–2858

    Article  CAS  PubMed  Google Scholar 

  • Paiva AD, Fernandes KM, Dias RS, Dos Santos Rocha A, Licursi de Oliveira L, Neves CA, Oliveira de Paula S, Mantovani HC (2013) Safety evaluation of the antimicrobial peptide bovicin HC5 orally administered to a murine model. BMC Microbiol 13:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramare F, Nicoli J, Dabard J, Corring T, Ladire M, Gueugneau AM, Raibaud P (1993) Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro. Appl Environ Microbiol 59:2876–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea MC, Cogan TM (1994) Buttermilk plants: the Irish version of kefir. Ir Scientist 2:7

    Google Scholar 

  • Rea MC, Clayton E, O’Connor PM, Shanahan F, Kiely B, Ross RP, Hill C (2007) Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol 56:940–946

    Article  CAS  PubMed  Google Scholar 

  • Rea MC, Dobson A, O’Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP (2011) Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 108:4639–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers LA, Whittier EO (1928) Limiting factors in the lactic fermentation. J Bacteriol 16:211–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzin A, Singh G, Severin A, Yang Y, Dushin RG, Sutherland AG, Minnick A, Greenstein M, May MK, Shlaes DM, Bradford PA (2004) Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 48:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MP, Rea MC, Hill C, Ross RP (1996) An Application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62:612–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MP, Meaney WJ, Ross RP, Hill C (1998) Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64:2287–2290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MP, Flynn J, Hill C, Ross RP, Meaney WJ (1999a) The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. J Dairy Sci 82:2625–2631

    Article  CAS  PubMed  Google Scholar 

  • Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C (1999b) Extensive post-translational modification, including serine to d-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem 274:37544–37550

    Article  CAS  PubMed  Google Scholar 

  • Sahl HG (1991) Pore formation in bacterial membranes by cationic lantibiotics. In: Jung G, Sahl HG (eds) Nisin and novel lantibiotics. Escom, Leiden, pp 347–358

    Google Scholar 

  • Sánchez A, Villanueva JR, Villa TG (1982) Effect of tunicamycin on exo- 1,3-β-d-glucanase synthesis and secretion by cells and protoplasts of Sacchavomyces cevevisiae. J Gen Microbiol 128:3051–3060

    PubMed  Google Scholar 

  • Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K, Ishizaki A (2000) A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 64:2420–2428

    Article  CAS  PubMed  Google Scholar 

  • Sashihara T, Dan M, Kimura H, Matsusaki H, Sonomoto K, Ishizaki A (2001) The effect of osmotic stress on the production of nukacin ISK-1 from Staphylococcus warneri ISK-1. Appl Microbiol Biotechnol 56:496–501

    Article  CAS  PubMed  Google Scholar 

  • Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78:2793–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt P, Wilmes M, Pugnière M, Aumelas A, Bachère E, Sahl HG, Schneider T, Destoumieux-Garzón D (2010) Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 285:29208–29216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz S, Hoffmann A, Szekat C, Rudd B, Bierbaum G (2006) The lantibiotic mersacidin is an autoinducing peptide. Appl Environ Microbiol 72:7270–7277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Sahl HG (2010a) An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Sahl HG (2010b) Lipid II and other bactoprenol-bound cell wall precursors as drug targets. Curr Opin Investig Drugs 11:157–164

    CAS  PubMed  Google Scholar 

  • Schneider TR, Kärcher J, Pohl E, Lubini P, Sheldrick GM (2000) Ab initio structure determination of the lantibiotic mersacidin. Acta Cryst. D56:705–713

    CAS  Google Scholar 

  • Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I (2004) In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 53:675–685

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  PubMed  Google Scholar 

  • Sherwood EJ, Bibb MJ (2013) The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110:2500–2509

    Article  Google Scholar 

  • Sherwood EJ, Hesketh AR, Bibb MJ (2013) Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba. J Bacteriol 195:2309–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Bueno A, van der Donk WA (2012) Heterologous production of the lantibiotic Ala(0)actagardine in Escherichia coli. Chem Commun (Camb) 48:10966–10968

    Article  CAS  Google Scholar 

  • Silkin L, Hamza S, Kaufman S, Cobb SL, Vederas JC (2008) Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg Med Chem Lett 18:3103–3106

    Article  CAS  PubMed  Google Scholar 

  • Singh MP, Petersen PJ, Weiss WJ, Janso JE, Luckman SW, Lenoy EB, Bradford PA, Testa RT, Greenstein M (2003) Mannopeptimycins, new cyclic glycopeptide antibiotics produced by Streptomyces hygroscopicus LL-AC98: antibacterial and mechanistic activities. Antimicrob Agents Chemother 47:62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinko W, Wang Y, Zhu W, Zhang Y, Feixas F, Cox CL, Mitchell DA, Oldfield E, McCammon JA (2014) Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads. J Med Chem 57:5693–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somma S, Merati W, Parenti F (1977) Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob Agents Chemother 11:396–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam-Niehaus B, Schneider T, Metzger JW, Wohlleben W (1997) Isolation and analysis of moenomycin and its biosynthetic intermediates from Streptomyces ghanaensis (ATCC 14672) wildtype and selected mutants. Z Naturforsch C 52:217–226

    CAS  PubMed  Google Scholar 

  • Suda S, Westerbeek A, O’Connor PM, Ross RP, Hill C, Cotter PD (2010) Effect of bioengineering lacticin 3147 lanthionine bridges on specific activity and resistance to heat and proteases. Chem Biol 17:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Szekat C, Jack RW, Skutlarek D, Färber H, Bierbaum G (2003) Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 69:3777–3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touzé T, Barreteau H, El Ghachi M, Bouhss A, Barnéoud-Arnoulet A, Patin D, Sacco E, Blanot D, Arthur M, Duché D, Lloubès R, Mengin-Lecreulx D (2012) Colicin M, a peptidoglycan lipid-II-degrading enzyme: potential use for antibacterial means? Biochem Soc Trans 40:1522–1527

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Brennan L, Meyer HE, Lohaus C, Siethoff C, Costa HS, Gonzalez B, Santos H, Suárez JE (1999) Solution structure of plantaricin C, a novel lantibiotic. Eur J Biochem 264:833–839

    Article  CAS  PubMed  Google Scholar 

  • Twomey DP, Wheelock AI, Flynn J, Meaney WJ, Hill C, Ross RP (2000) Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. J Dairy Sci 3:1981–1988

    Article  Google Scholar 

  • van Bambeke F (2006) Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 7:740–749

    PubMed  Google Scholar 

  • van Wageningen AM, Kirkpatrick PN, Williams DH, Harris BR, Kershaw JK, Lennard NJ, Jones M, Jones SJ, Solenberg PJ (1998) Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5:155–162

    Article  PubMed  Google Scholar 

  • Varney KM, Bonvin AM, Pazgier M, Malin J, Yu W, Ateh E, Oashi T, Lu W, Huang J, Diepeveen-de Buin M, Bryant J, Breukink E, Mackerell AD Jr, de Leeuw EP (2013) Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog 9:e1003732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vértesy L, Aretz W, Bonnefoy A, Ehlers E, Kurz M, Markus A, Schiell M, Vogel M, Wink J, Kogler H (1999) Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048. J Antibiot (Tokyo) 52:730–741

    Article  Google Scholar 

  • Volke F, Waschipky R, Pampel A, Donnerstag A, Lantzsch G, Pfeiffer H, Richter W, Klose G, Welzel P (1997) Characterisation of antibiotic moenomycin A interaction with phospholipid model membranes. Chem Phys Lipids 85:115–123

    Article  CAS  PubMed  Google Scholar 

  • Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ, Sahl HG, Hoerauf A, Pfarr K (2013) Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 303:140–149

    Article  CAS  PubMed  Google Scholar 

  • Wakamiya T, Ueki Y, Shiba T, Kido Y, Motoki Y (1985) The structure of ancovenin, a new peptide inhibitor of angiotensin I converting enzyme. Tetrahedron Lett 26:665–668

    Article  CAS  Google Scholar 

  • Wallhausser KH, Nesemann G, Prave P, Steigler A (1965) Moenomycin, a new antibiotic. Fermentation and isolationI. Antimicrob Agents Chemother (Bethesda) 5:734–736

    CAS  Google Scholar 

  • Whitford MF, McPherson MA, Forster RJ, Teather RM (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67:569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdick DA, Dodd HM, Barraille P, White J, Stein TH, Chater KF, Gasson MJ, Bibb MJ (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci USA 100:4316–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann I, Böttiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006a) The mode of action of the lantibiotic lacticin 3147 a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61:285–296

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann I, Böttiger T, Bonelli RR, Schneider T, Sahl HG, Martínez B (2006b) Lipid II-Based Antimicrobial Activity of the Lantibiotic Plantaricin C. Appl Environ Microbiol 72:2809–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson-Stanford S, Kalli A, Håkansson K, Kastrantas J, Orugunty RS, Smith L (2009) Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl Environ Microbiol 75:1381–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao H, Chen X, Chen M, Tang S, Zhao X, Huan L (2004) Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology 150:103–108

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann N, Metzger JW, Jung G (1995) The tetracyclic lantibiotic actagardine. 1H-NMR and 13C-NMR assignments and revised primary structure. Eur J Biochem 228:786–797

    Article  CAS  PubMed  Google Scholar 

  • Zipser RD, Laffi G (1985) Prostaglandins, thromboxanes and leukotrienes in clinical medicine. West J Med 143:485–497

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás G. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villa, T.G., Feijoo-Siota, L., Rama, J.L.R., Sánchez-Pérez, A., de Miguel-Bouzas, T. (2016). The Case of Lipid II: The Achilles’ Heel of Bacteria. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_9

Download citation

Publish with us

Policies and ethics

Navigation