Adjoint-Based Error Estimation and Mesh Refinement in an Adjoint-Based Airfoil Shape Optimization of a Transonic Benchmark Problem

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics X

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 132))

Abstract

In this article, we apply a new airfoil shape optimization algorithm based on adaptive higher order Discontinuous Galerkin methods with discretization error control to a 2D benchmark problem of the AIAA Design Optimization Discussion Group. Each flow solution in the optimization process is computed on a sequence of goal-oriented h- or hp-refined meshes until the estimation of the discretization error in a given target quantity (like the drag coefficient) is below a prescribed error tolerance. Furthermore, the optimization is driven by the Sequential Quadratic Programming (SQP) algorithm and the corresponding gradient of the objective function is evaluated via the adjoint approach. Finally, the effect of the discretization error on the quality of the optimized airfoil shapes is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 311.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 311.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caglar, H., Akansu, A.N.: A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation. IEEE Trans. Sig. Process. 41(7), 2314–2321 (1993)

    Article  MATH  Google Scholar 

  3. Carrier, G., Destarac, D., et al.: Gradient-based aerodynamic optimization with the elsA software. In: 52nd AIAA Aerospace Sciences Meeting, SciTech, 2014, AIAA-2014-0568 (2014)

    Google Scholar 

  4. Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hartmann, R., Held, J., Leicht, T., Prill, F.: Discontinuous Galerkin methods for computational aerodynamics-3D adaptive flow simulation with the DLR PADGE code. Aerosp. Sci. Technol. 14, 512–519 (2010)

    Article  Google Scholar 

  6. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183(2), 508–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hicks, R.M., Henne, P.: Wing design by numerical optimization. J. Aircr. 15, 407–412 (1978)

    Article  Google Scholar 

  8. https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx

  9. Jameson, A.: Optimum aerodynamic design using CFD and control theory. In: 12th Computational Fluid Dynamics Conference, AIAA Paper 95–1729 (1995)

    Google Scholar 

  10. Leicht, T., Hartmann, R.: Error estimation and hp-adaptive mesh refinement for discontinuous Galerkin methods. In: Wang, ZJ. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, Advances in Computational Fluid Dynamics, vol. 2, Chap. 3, pp. 67–94. World Science Books (2011)

    Google Scholar 

  11. Li, D., Hartmann, R.: Adjoint-based airfoil optimization with discretization error control. Int. J. Numer. Meth. Fluids 77(1), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lu, J.: An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method. PhD thesis, M.I.T. (2005)

    Google Scholar 

  13. Mavriplis, C.: Adaptive mesh strategies for the spectral element method. Comput. Methods Appl. Mech. Engrg. 116, 77–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nocedal, J., Wright, SJ.: Numerical Optimization. Springer (2006)

    Google Scholar 

  15. Vassberg, J.C., Harrison, N., Roman, D., Jameson, A.: A systematic study on the impact of dimensionality for a two-dimensional aerodynamics optimization model problem. In: 29th AIAA Applied Aerodynamic Conference, AIAA 2011–3176 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, D., Hartmann, R. (2016). Adjoint-Based Error Estimation and Mesh Refinement in an Adjoint-Based Airfoil Shape Optimization of a Transonic Benchmark Problem. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-27279-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27279-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27278-8

  • Online ISBN: 978-3-319-27279-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation