• 3202 Accesses

Abstract

A quickly expanding process within the paint and coatings industry is the implementation of ultraviolet (UV) to cure or dry coating on various products (i.e., wood, metal, or plastic). Increasingly used in place of replacing conventional high-heat processing techniques, UV-cured coating produces materials with improved properties, lowers the operational costs (e.g., natural gas costs for bake curing), and reduces the overall environmental impact. This chapter describes this new class of smart UV-curable coatings. In the first part, UV-curable and smart coatings are introduced. In the following sections, smart coating properties such as self-cleaning, self-healing, antifog, and antibacterial are described separately and synthesize routes for smart coatings. Finally, this chapter will highlight different types of smart UV-curable coatings for various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciprian RM, Christophe B, Guy A, Bruno M (2012) J Therm Anal Calorim 110:287–294

    Article  Google Scholar 

  2. Koleske V (2002) Radiation curing of coatings. ASTM International, Conshohocken, PA

    Book  Google Scholar 

  3. Uhl FM, Webster DC, Davuluri SP, Wong SC (2006) Eur Polym J 42:2596–2605

    Article  Google Scholar 

  4. Decker C, Nguyen T, Decker D, Weber-Koehl E (2001) Polymer 42:5531–5541

    Article  Google Scholar 

  5. Decker C, Zahouily K, Decker D, Nguyen T, Viet T (2001) Polymer 42:7551–7560

    Article  Google Scholar 

  6. Macarie L, Ilia G, Iliescu S, Popa A, Plesu N, Pascariu A (2008) Plast Rubber Compos 37:258–262

    Article  Google Scholar 

  7. Steeman PAM, Dias AA, Wienke D, Zwartkruis T (2004) Macromolecules 37:7001–7007

    Article  Google Scholar 

  8. Makhlouf ASH (2014) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge

    Google Scholar 

  9. Li W, Hintze P, Calle LM, Buhrow J, Curran J (2009) Smart coating for corrosion indication and prevention: recent progress, Nace International

    Google Scholar 

  10. Clingerman M (2014) PCI magazine. http://www.pcimag.com/articles/98925-smart-coatings (Last accessed: May 2015)

  11. Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U (2013) Nano Lett 13:5329–5335

    Article  Google Scholar 

  12. Latthe SS, Liu S, Terashima C, Nakata K, Fujishima A (2014) Coatings 4:497–507

    Article  Google Scholar 

  13. Verma G, Swain S, Khanna AS (2013) Int J Sci Eng Technol 2:192–200

    Google Scholar 

  14. Young T (1805) Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  15. Wenzel RN (1936) Ind Eng Chem 28:988–994

    Article  Google Scholar 

  16. Gennes D, Gilles P (2004) Capillarity and wetting phenomena. ISBN 0-387-00592-7

  17. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  18. Quere D (2005) Rep Prog Phys 68:2495–2532

    Article  Google Scholar 

  19. Soroushnia SH, Bastani S, Bozorgi MM, Rostami M (2015) Prog Org Coat 85:31–37

    Article  Google Scholar 

  20. Lai Y, Tang Y, Gong J, Gong D, Chi L, Linc C, Chen Z (2012) J Mater Chem 22:7420–7426

    Article  Google Scholar 

  21. http://www.hirecpaint.com/photocatalyst_selfcleaning_mechanism.html (Last accessed: May 2015)

  22. Kaewpirom S, Kunwong D (2012) J Polym Res 19:9995–10007

    Google Scholar 

  23. Smitha VS, Jaimy KB, Shajesh P, Jeena JK, Warrier KG (2013) J Mater Chem A 1:12641–12649

    Article  Google Scholar 

  24. Introzzi L, Fuentes-Alventosa JM, Cozzolino CA, Trabattoni S, Tavazzi S, Bianchi CL, Schiraldi A, Piergiovanni L, Farris S (2012) Appl Mater Interfaces 4:3692–3700

    Article  Google Scholar 

  25. Howarter JA, Jeffrey P (2008) Macromol Rapid Commun 29:455–466

    Article  Google Scholar 

  26. Chevallier P, Turgeon S, Sarra-Bournet C, Turcotte R, Laroche G (2011) Appl Mater Interfaces 3:750–758

    Article  Google Scholar 

  27. Chang CC, Huang FH, Chang HH, Don TM, Chen CC, Cheng LP (2012) Langmuir 28:17193–17201

    Article  Google Scholar 

  28. Jacubes D, Lechwar A, Bogdanova A, Longo R http://www.pcoatingsintl.com/wp-content/uploads/2014/04/Multifunctional-UVEB-Curable-Oligomers-for-Optical-Coatings-WP-Jacobs-Du.pdf (Last accessed: May 2015)

  29. Zoromba MST (2009) Preparation and characterization of new nano-structured organic/inorganic composite coatings for anti-fog applications. Doctoral thesis. Faculty of Natural and Material Sciences, Clausthal University of Technology, El Manzala, Egypt

    Google Scholar 

  30. Yuan Y, Liu R, Wang C, Luo J, Liu X (2014) Prog Org Coat 77:785–789

    Article  Google Scholar 

  31. Tang R, Muhammad A, Yang J, Nie J (2014) Polym Adv Technol 25:651–656

    Article  Google Scholar 

  32. White SR, Caruso MM, Moore JS (2008) MRS Bull 33:766–769

    Article  Google Scholar 

  33. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794–797

    Article  Google Scholar 

  34. Wu DY, Meure S, Solomon D (2008) Prog Polym Sci 33:479–522

    Article  Google Scholar 

  35. Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Compos Sci Technol 67:201–212

    Article  Google Scholar 

  36. Clingerman M (2014) PCI Magazine

    Google Scholar 

  37. Kim HM, Chang YR, Kim H (2013) UV-curable coating composition having self-healing capabilities, coating film and method for preparing coating film. EP2644668 A2

    Google Scholar 

  38. Lee JY, Zhang Q, Emrick T, Crosby AJ (2006) Macromolecules 39:7392–7396

    Article  Google Scholar 

  39. Kardar P, Ebrahimi M, Bastani S (2008) Prog Org Coat 62:321–325

    Article  Google Scholar 

  40. Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) Int J Food Microbiol 146:144–150

    Article  Google Scholar 

  41. DeVasConCellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG (2012) Mater Sci Eng C 32:1112–1120

    Article  Google Scholar 

  42. Chen Z, Chisholm B, Stafslien S, He J, Patel S (2010) J Biomed Mater Res A 95:486–494

    Article  Google Scholar 

  43. Motlagh AL, Bastani S (2014) Prog Org Coat 77:502–511

    Article  Google Scholar 

  44. Liu R, Zheng J, Li Z, Liu J, Liu X. RSC Adv. doi:10.1039/C5RA03881B

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Bastani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bastani, S., Kardar, P. (2016). Radiation-Curable Smart Coatings. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_30

Download citation

Publish with us

Policies and ethics

Navigation