Diagnostic Applications of Nuclear Medicine: Uterine Cancers

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Cervical and uterine malignancies are a significant health issue for women worldwide. Uterine cancers are the most common gynecological cancers, although ovarian cancers have the highest mortality. The primary modalities for anatomic imaging are ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). These imaging tools are used for the diagnosis, staging, and posttherapy follow-up for detection of recurrent disease; however, they lack biologic information. Positron emission tomography (PET) with [18F]fluoro-2-deoxy-D-glucose ([18F]FDG) imaging plays a critical role in the evaluation of cervical and uterine malignancies. A number of studies have established the role of [18F]FDG PET in the staging and prognosis of advanced cervical cancer. PET/MRI scanners with newer technology are available and in future may be the mainstay in assessment of gynecologic malignancies.

Radionuclide lymphoscintigraphy is an established technique for sentinel lymph node (SNL) map** in vulvar cancer. For cervical and endometrial cancer, it can help prevent morbidities that follow lymphadenectomies and there is convincing evidence that SLN map** can be useful in early-stage disease.

In this chapter, we discuss the role of nuclear imaging, especially [18F]FDG PET scanning, and summarize the initial experiences with PET/MRI in cervical and uterine cancers; we also discuss the use of lymphoscintigraphy in gynecological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FMISO:

18F-fluoromisonidazole, 1-fluoro-3-(2-nitroimidazol-1-yl)-propan-2-ol

ADC:

Apparent diffusion coefficient, a parameter of magnetic resonance imaging

AJCC:

American Joint Committee on Cancer

ceCT:

Contrast-enhanced computed tomography

CI:

Confidence interval

CIN:

Cervical intraepithelial neoplasia

CT:

X-ray computed tomogaphy

DES:

Diethylstilbestrol

EC:

Endometrial cancer

FDA:

United States Food and Drug Administration

FIGO:

International Federation of Obstetrics and Gynecology

GLUT:

Glucose transporter family

HIV:

Human immunodeficiency virus

HK:

Hexokinase

HPV:

Human papilloma virus

IMRT:

Intensity-modulated radiation therapy

IVP:

Intravenous pyelography

LACC:

Locally advanced cervical cancer

LSG:

Lymphoscintigraphy

M:

Metastasis status according to the AJCC/UICC TNM staging system

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

N:

Lymph node status according to the AJCC/UICC TNM staging system

NPV:

Negative predictive value

OS:

Overall survival

PALN:

Para-aortic lymph nodes

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MRI:

Positron emission tomography/Magnetic resonance imaging

PFS:

Progression-free survival

PLN:

Pelvic lymph nodes

PPV:

Positive predictive value

SCC:

Squamous cell carcinoma

SNL:

Sentinel lymph node

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/Computed tomography

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TLG:

Total lesion glycolysis

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

References

  1. National Cancer Institute Surveillance E. End Results (NCI SEER) program. http://www.seer.cancer.gov; 2013.

  2. American Cancer Society. Cancer facts and figures. http://www.cancer.org

  3. Chi DBR, Rubin SC. Gynecologic malignancies. Cancer management: a multidisciplinary approach. 4th ed. Melville: PRR; 1999.

    Google Scholar 

  4. Young RC, Fuks Z, Hoskins WJ. In: DeVita VT, Hellman S, Rosenberg St., editors. Cancer: principles and practice of oncology. vol. 9. Philadelphia: J B Lippincott; 2011.

    Google Scholar 

  5. http://www.FIGO.org

    Google Scholar 

  6. Toita T, et al. Prognostic value of cervical size and pelvic lymph node status assessed by computed tomography for patients with uterine cervical cancer treated by radical radiation therapy. Int J Radiat Oncol Biol Phys. 1995;33(4):843–9.

    Article  CAS  PubMed  Google Scholar 

  7. Van Nagell Jr JR, Roddick Jr JW, Lowin DM. The staging of cervical cancer: inevitable discrepancies between clinical staging and pathologic findinges. Am J Obstet Gynecol. 1971;110(7):973–8.

    Article  PubMed  Google Scholar 

  8. Kamura T, et al. Multivariate analysis of the histopathologic prognostic factors of cervical cancer in patients undergoing radical hysterectomy. Cancer. 1992;69(1):181–6.

    Article  CAS  PubMed  Google Scholar 

  9. Walsh JW, Goplerud DR. Prospective comparison between clinical and CT staging in primary cervical carcinoma. AJR Am J Roentgenol. 1981;137(5):997–1003.

    Article  CAS  PubMed  Google Scholar 

  10. Vandeperre A, et al. Para-aortic lymph node metastases in locally advanced cervical cancer: comparison between surgical staging and imaging. Gynecol Oncol. 2015;138(2):299–303.

    Article  PubMed  Google Scholar 

  11. Tran BN, et al. Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol. 2003;90(3):572–6.

    Article  PubMed  Google Scholar 

  12. Hricak H, et al. Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology. 1988;166(3):623–31.

    Article  CAS  PubMed  Google Scholar 

  13. Togashi K, et al. Cervical cancer. J Magn Reson Imaging. 1998;8(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kim SH, et al. Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr. 1993;17(4):633–40.

    Article  CAS  PubMed  Google Scholar 

  15. Lagasse LD, et al. Results and complications of operative staging in cervical cancer: experience of the Gynecologic Oncology Group. Gynecol Oncol. 1980;9(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  16. LaPolla JP, et al. The influence of surgical staging on the evaluation and treatment of patients with cervical carcinoma. Gynecol Oncol. 1986;24(2):194–206.

    Article  CAS  PubMed  Google Scholar 

  17. Yen TC, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med. 2004;45(1):22–9.

    CAS  PubMed  Google Scholar 

  18. Schneider A, Hertel H. Surgical and radiographic staging in patients with cervical cancer. Curr Opin Obstet Gynecol. 2004;16(1):11–8.

    Article  PubMed  Google Scholar 

  19. Kidd EA, et al. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake. Cancer. 2009;115(15):3548–54.

    Article  PubMed  Google Scholar 

  20. Tong SY, et al. Correlation between FDG uptake by PET/CT and the expressions of glucose transporter type 1 and hexokinase II in cervical cancer. Int J Gynecol Cancer. 2012;22(4):654–8.

    Article  PubMed  Google Scholar 

  21. Yilmaz M, et al. FDG PET-CT in cervical cancer: relationship between primary tumor FDG uptake and metastatic potential. Nucl Med Commun. 2010;31(6):526–31.

    PubMed  Google Scholar 

  22. Wong TZ, Jones EL, Coleman RE. Positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol Imaging Biol. 2004;6(1):55–62.

    Article  PubMed  Google Scholar 

  23. Metser U, et al. Tumor lesion detection: when is integrated positron emission tomography/computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography? J Comput Assist Tomogr. 2005;29(4):554–9.

    Article  PubMed  Google Scholar 

  24. Kitajima K, et al. Performance of FDG-PET/CT for diagnosis of recurrent uterine cervical cancer. Eur Radiol. 2008;18(10):2040–7.

    Article  PubMed  Google Scholar 

  25. Tatsumi M, et al. Imaging uterine cervical cancer with FDG-PET/CT: direct comparison with PET. Mol Imaging Biol. 2009;11(4):229–35.

    Article  PubMed  Google Scholar 

  26. Sugawara Y, et al. Evaluation of FDG PET in patients with cervical cancer. J Nucl Med. 1999;40(7):1125–31.

    CAS  PubMed  Google Scholar 

  27. Rose PG, et al. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol. 1999;17(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  28. Roh JW, et al. Role of positron emission tomography in pretreatment lymph node staging of uterine cervical cancer: a prospective surgicopathologic correlation study. Eur J Cancer. 2005;41(14):2086–92.

    Article  PubMed  Google Scholar 

  29. Park W, et al. The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol. 2005;35(5):260–4.

    Article  PubMed  Google Scholar 

  30. Park W, et al. The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol. 2005;35(5):260–4.

    Article  PubMed  Google Scholar 

  31. Choi HJ, et al. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer. 2006;106(4):914–22.

    Article  PubMed  Google Scholar 

  32. Chou HH, et al. Low value of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in primary staging of early-stage cervical cancer before radical hysterectomy. J Clin Oncol. 2006;24(1):123–8.

    Article  PubMed  Google Scholar 

  33. Reinhardt MJ, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology. 2001;218(3):776–82.

    Article  CAS  PubMed  Google Scholar 

  34. Loft A, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol. 2007;106(1):29–34.

    Article  PubMed  Google Scholar 

  35. Kang S, et al. Diagnostic value of 18F-FDG PET for evaluation of paraaortic nodal metastasis in patients with cervical carcinoma: a metaanalysis. J Nucl Med. 2010;51(3):360–7.

    Article  PubMed  Google Scholar 

  36. Belhocine T, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol. 2002;87(1):90–7.

    Article  PubMed  Google Scholar 

  37. Lv K, et al. Role of 18F-FDG PET/CT in detecting pelvic lymph-node metastases in patients with early-stage uterine cervical cancer: comparison with MRI findings. Nucl Med Commun. 2014;35(12):1204–11.

    Article  CAS  PubMed  Google Scholar 

  38. Wright JD, et al. Preoperative lymph node staging of early-stage cervical carcinoma by F-18 -fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer. 2005;104(11):2484–91.

    Article  PubMed  Google Scholar 

  39. Lai CH, Yen TC, Chang TC. Positron emission tomography imaging for gynecologic malignancy. Curr Opin Obstet Gynecol. 2007;19(1):37–41.

    Article  PubMed  Google Scholar 

  40. Rockall AG, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 2005;23(12):2813–21.

    Article  PubMed  Google Scholar 

  41. Roh JW, et al. Role of positron emission tomography in pretreatment lymph node staging of uterine cervical cancer: a prospective surgicopathologic correlation study. Eur J Cancer. 2005;41(14):2086–92.

    Article  PubMed  Google Scholar 

  42. Williams AD, et al. Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography. AJR Am J Roentgenol. 2001;177(2):343–8.

    Article  CAS  PubMed  Google Scholar 

  43. Belhocine T, et al. Staging of primary cervical cancers: the role of nuclear medicine. Crit Rev Oncol Hematol. 2003;46(3):275–84.

    Article  PubMed  Google Scholar 

  44. Sironi S, et al. Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology. 2006;238(1):272–9.

    Article  PubMed  Google Scholar 

  45. Yang Z, et al. 18F-FDG PET/CT can correct the clinical stages and predict pathological parameters before operation in cervical cancer. Eur J Radiol. 2016;85(5):877–84.

    Article  PubMed  Google Scholar 

  46. Loft A, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol. 2007;106(1):29–34.

    Article  PubMed  Google Scholar 

  47. Monteil J, et al. Lymph node assessment with 18F-FDG-PET and MRI in uterine cervical cancer. Anticancer Res. 2011;31(11):3865–71.

    PubMed  Google Scholar 

  48. Leblanc E, et al. Therapeutic value of pretherapeutic extraperitoneal laparoscopic staging of locally advanced cervical carcinoma. Gynecol Oncol. 2007;105(2):304–11.

    Article  PubMed  Google Scholar 

  49. Michel G, et al. Lymphatic spread in stage Ib and II cervical carcinoma: anatomy and surgical implications. Obstet Gynecol. 1998;91(3):360–3.

    Article  CAS  PubMed  Google Scholar 

  50. Akkas BE, Demirel BB, Vural GU. Clinical impact of 18F-FDG PET/CT in the pretreatment evaluation of patients with locally advanced cervical carcinoma. Nucl Med Commun. 2012;33(10):1081–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sugawara Y, et al. Evaluation of FDG PET in patients with cervical cancer. J Nucl Med. 1999;40(7):1125–31.

    CAS  PubMed  Google Scholar 

  52. Lin WC, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol. 2003;89(1):73–6.

    Article  PubMed  Google Scholar 

  53. Yeh LS, et al. Detecting para-aortic lymph nodal metastasis by positron emission tomography of 18F-fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep. 2002;9(6):1289–92.

    PubMed  Google Scholar 

  54. Rose PG, et al. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol. 1999;17(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  55. Havrilesky LJ, et al. FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol. 2005;97(1):183–91.

    Article  PubMed  Google Scholar 

  56. Yildirim Y, et al. Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol. 2008;108(1):154–9.

    Article  CAS  PubMed  Google Scholar 

  57. Uzan C, et al. Analysis of morbidity and clinical implications of laparoscopic para-aortic lymphadenectomy in a continuous series of 98 patients with advanced-stage cervical cancer and negative PET-CT imaging in the para-aortic area. Oncologist. 2011;16(7):1021–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leblanc E, et al. Accuracy of 18-fluoro-2-deoxy-D-glucose positron emission tomography in the pretherapeutic detection of occult para-aortic node involvement in patients with a locally advanced cervical carcinoma. Ann Surg Oncol. 2011;18(8):2302–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ramirez PT, et al. Laparoscopic extraperitoneal para-aortic lymphadenectomy in locally advanced cervical cancer: a prospective correlation of surgical findings with positron emission tomography/computed tomography findings. Cancer. 2011;117(9):1928–34.

    Article  PubMed  Google Scholar 

  60. Perez-Medina T, et al. Prospective evaluation of 18-fluoro-2-deoxy-D-glucose positron emission tomography for the discrimination of paraaortic nodal spread in patients with locally advanced cervical carcinoma. Int J Gynecol Cancer. 2013;23(1):170–5.

    Article  PubMed  Google Scholar 

  61. Chung HH, et al. Role of integrated PET-CT in pelvic lymph node staging of cervical cancer before radical hysterectomy. Gynecol Obstet Investig. 2009;67(1):61–6.

    Article  Google Scholar 

  62. Lee YY, et al. The prognostic significance of the SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) of the cervical tumor in PET imaging for early cervical cancer: preliminary results. Gynecol Oncol. 2009;115(1):65–8.

    Article  PubMed  Google Scholar 

  63. Micco M, et al. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol. 2014;83(7):1169–76.

    Article  PubMed  Google Scholar 

  64. Chung HH, et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 2011;120(2):270–4.

    Article  PubMed  Google Scholar 

  65. Yoo J, et al. Prognostic significance of volume-based metabolic parameters in uterine cervical cancer determined using 18F-fluorodeoxyglucose positron emission tomography. Int J Gynecol Cancer. 2012;22(7):1226–33.

    Article  PubMed  Google Scholar 

  66. Hong JH, et al. Prognostic value of total lesion glycolysis measured by 18F-FDG PET/CT in patients with locally advanced cervical cancer. Nucl Med Commun. 2016;37(8):843–8.

    Article  CAS  PubMed  Google Scholar 

  67. Herrera F, et al. [18F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol, 2016. 11: p. 43.

    Google Scholar 

  68. Krhili, et al. Use of metabolic parameters as prognostic factors during concomitant chemoradiotherapy for locally advanced cervical cancer. Am J Clin Oncol. 2017;40(3):250–55.

    Google Scholar 

  69. Singh AK, et al. FDG-PET lymph node staging and survival of patients with FIGO stage IIIb cervical carcinoma. Int J Radiat Oncol Biol Phys. 2003;56(2):489–93.

    Article  PubMed  Google Scholar 

  70. Kidd EA, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol. 2010;28(12):2108–13.

    Article  PubMed  Google Scholar 

  71. Chao A, et al. Positron emission tomography in evaluating the feasibility of curative intent in cervical cancer patients with limited distant lymph node metastases. Gynecol Oncol. 2008;110(2):172–8.

    Article  PubMed  Google Scholar 

  72. Qiu JT, et al. Supraclavicular lymph node metastases in cervical cancer. Eur J Gynaecol Oncol. 2007;28(1):33–8.

    CAS  PubMed  Google Scholar 

  73. Kidd EA, et al. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127(1):136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yen TC, et al. Standardized uptake value in para-aortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. Eur J Nucl Med Mol Imaging. 2008;35(3):493–501.

    Article  PubMed  Google Scholar 

  75. Kim, D.H., et al. Maximum standardized uptake value of pelvic lymph nodes in [18F]-fluorodeoxyglucose positron emission tomography is a prognostic factor for para-aortic lymph node recurrence in pelvic node-positive cervical cancer treated with definitive chemoradiotherapy. Int J Gyn Cancer. 2016;26(7):1274–80.

    Google Scholar 

  76. Onal C, et al. Prognostic value of 18F-fluorodeoxyglucose uptake in pelvic lymph nodes in patients with cervical cancer treated with definitive chemoradiotherapy. Gynecol Oncol. 2015;137(1):40–6.

    Article  PubMed  Google Scholar 

  77. Gold MA, et al. Surgical versus radiographic determination of para-aortic lymph node metastases before chemoradiation for locally advanced cervical carcinoma: a Gynecologic Oncology Group Study. Cancer. 2008;112(9):1954–63.

    Article  PubMed  Google Scholar 

  78. Crivellaro, et al. 18F–FDG PET/CT can predict nodal metastases but not recurrence in early stage uterine cervical cancer. Gynecol Oncol. 2012;127(1):131–5.

    Google Scholar 

  79. Kim BS, et al. The prognostic value of the metabolic tumor volume in FIGO stage IA to IIB cervical cancer for tumor recurrence: measured by F-18 FDG PET/CT. Nucl Med Mol Imaging. 2011;45(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  80. Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14(16):5236–41.

    Article  CAS  PubMed  Google Scholar 

  81. Sarker A, et al. Prognostic implications of the SUVmax of primary tumors and metastatic lymph node measured by 18F-FDG PET in patients with uterine cervical cancer: a meta-analysis. Clin Nucl Med. 2016;41(1):34–40.

    Article  PubMed  Google Scholar 

  82. Chung HH, et al. Preoperative PET/CT FDG standardized uptake value of pelvic lymph nodes as a significant prognostic factor in patients with uterine cervical cancer. Eur J Nucl Med Mol Imaging. 2014;41(4):674–81.

    Article  PubMed  Google Scholar 

  83. Yen TC, et al. Standardized uptake value in para-aortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. Eur J Nucl Med Mol Imaging. 2008;35(3):493–501.

    Article  PubMed  Google Scholar 

  84. Nakamura K, et al. Maximum standardized lymph node uptake value could be an important predictor of recurrence and survival in patients with cervical cancer. Eur J Obstet Gynecol Reprod Biol. 2014;173:77–82.

    Article  PubMed  Google Scholar 

  85. Narayan K, et al. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by positron emission tomography and treated with curative intent. Int J Gynecol Cancer. 2009;19(5):912–8.

    Article  PubMed  Google Scholar 

  86. Belhocine T, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol. 2002;87(1):90–7.

    Article  PubMed  Google Scholar 

  87. Fleming S, et al. Clinical impact of FDG PET-CT on the management of patients with locally advanced cervical carcinoma. Clin Radiol. 2014;69(12):1235–43.

    Article  CAS  PubMed  Google Scholar 

  88. Grigsby PW, et al. Lack of benefit of concurrent chemotherapy in patients with cervical cancer and negative lymph nodes by FDG-PET. Int J Radiat Oncol Biol Phys. 2005;61(2):444–9.

    Article  PubMed  Google Scholar 

  89. Pandharipande PV, et al. MRI and PET/CT for triaging stage IB clinically operable cervical cancer to appropriate therapy: decision analysis to assess patient outcomes. AJR Am J Roentgenol. 2009;192(3):802–14.

    Article  PubMed  Google Scholar 

  90. Yoshida Y, et al. Metabolic monitoring of advanced uterine cervical cancer neoadjuvant chemotherapy by using [F-18]-Fluorodeoxyglucose positron emission tomography: preliminary results in three patients. Gynecol Oncol. 2004;95(3):597–602.

    Article  PubMed  Google Scholar 

  91. Sandvik RM, et al. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer. Dan Med Bull. 2011;58(3):A4240.

    PubMed  Google Scholar 

  92. Tsai CS, et al. A prospective randomized trial to study the impact of pretreatment FDG-PET for cervical cancer patients with MRI-detected positive pelvic but negative para-aortic lymphadenopathy. Int J Radiat Oncol Biol Phys. 2010;76(2):477–84.

    Article  PubMed  Google Scholar 

  93. Malyapa RS, et al. Physiologic FDG-PET three-dimensional brachytherapy treatment planning for cervical cancer. Int J Radiat Oncol Biol Phys. 2002;54(4):1140–6.

    Article  PubMed  Google Scholar 

  94. Mutic S, et al. PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys. 2003;55(1):28–35.

    Article  PubMed  Google Scholar 

  95. Vargo JA, et al. Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014;90(5):1091–8.

    Article  PubMed  Google Scholar 

  96. Choi J, et al. The role of 18F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent chemoradiation therapy. Nucl Med Mol Imaging. 2014;48(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  97. Havrilesky LJ, et al. FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol. 2005;97(1):183–91.

    Article  PubMed  Google Scholar 

  98. Havrilesky LJ, et al. The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol. 2003;90(1):186–90.

    Article  PubMed  Google Scholar 

  99. Kitajima K, et al. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence. Eur J Nucl Med Mol Imaging. 2010;37(8):1490–8.

    Article  PubMed  Google Scholar 

  100. Spottswood SE, et al. Peritoneal carcinomatosis from cervical cancer detected by F-18 FDG positron emission tomography. Clin Nucl Med. 2005;30(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  101. Unger JB, et al. Detection of recurrent cervical cancer by whole-body FDG PET scan in asymptomatic and symptomatic women. Gynecol Oncol. 2004;94(1):212–6.

    Article  PubMed  Google Scholar 

  102. Weber TM, et al. Cervical carcinoma: determination of recurrent tumor extent versus radiation changes with MR imaging. Radiology. 1995;194(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  103. Spottswood SE, et al. Peritoneal carcinomatosis from cervical cancer detected by F-18 FDG positron emission tomography. Clin Nucl Med. 2005;30(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  104. van der Veldt AA, et al. Clarifying the diagnosis of clinically suspected recurrence of cervical cancer: impact of 18F-FDG PET. J Nucl Med. 2008;49(12):1936–43.

    Article  PubMed  Google Scholar 

  105. Auguste P, et al. Evaluating PET-CT in routine surveillance and follow-up after treatment for cervical cancer: a cost-effectiveness analysis. BJOG. 2014;121(4):464–76.

    Article  CAS  PubMed  Google Scholar 

  106. Mittra E, et al. Efficacy of 18F-FDG PET/CT in the evaluation of patients with recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(12):1952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chang TC, et al. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies: a phase II study. Cancer. 2004;101(1):164–71.

    Article  PubMed  Google Scholar 

  108. Sakurai H, et al. FDG-PET in the detection of recurrence of uterine cervical carcinoma following radiation therapy--tumor volume and FDG uptake value. Gynecol Oncol. 2006;100(3):601–7.

    Article  PubMed  Google Scholar 

  109. Chang WC, et al. Usefulness of FDG-PET to detect recurrent cervical cancer based on asymptomatically elevated tumor marker serum levels--a preliminary report. Cancer Investig. 2004;22(2):180–4.

    Article  CAS  Google Scholar 

  110. Yen TC, et al. Comparative benefits and limitations of 18F-FDG PET and CT-MRI in documented or suspected recurrent cervical cancer. Eur J Nucl Med Mol Imaging. 2006;33(12):1399–407.

    Article  PubMed  Google Scholar 

  111. Pallardy A, et al. Clinical and survival impact of FDG PET in patients with suspicion of recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging. 2010;37(7):1270–8.

    Article  PubMed  Google Scholar 

  112. Chung HH, et al. Predictive role of post-treatment [18F]FDG PET/CT in patients with uterine cervical cancer. Eur J Radiol. 2012;81(8):e817–22.

    Article  PubMed  Google Scholar 

  113. Esthappan J, et al. Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys. 2004;58(4):1289–97.

    Article  PubMed  Google Scholar 

  114. Dolezelova H, et al. The impact of PET with 18FDG in radiotherapy treatment planning and in the prediction in patients with cervix carcinoma: results of pilot study. Neoplasma. 2008;55(5):437–41.

    CAS  PubMed  Google Scholar 

  115. Kidd EA, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77(4):1085–91.

    Article  PubMed  Google Scholar 

  116. Dyk P, et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(4):794–801.

    Article  PubMed  Google Scholar 

  117. Fyles AW, et al. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol. 1998;48(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  118. Hockel M, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56(19):4509–15.

    CAS  PubMed  Google Scholar 

  119. Fujibayashi Y, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38(7):1155–60.

    CAS  PubMed  Google Scholar 

  120. Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;43:4893–902.

    Article  CAS  Google Scholar 

  121. Dehdashti F, et al. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys. 2003;55(5):1233–8.

    Article  PubMed  Google Scholar 

  122. Pinker K, et al. Multiparametric [18F]fluorodeoxyglucose/[18F]fluoromisonidazole positron emission tomography/magnetic resonance imaging of locally advanced cervical cancer for the non-invasive detection of tumor heterogeneity: a pilot study. PLoS One. 2016;11(5):e0155333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lee SI, Catalano OA, Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med. 2015;56(3):436–43.

    Article  PubMed  Google Scholar 

  124. Kim SK, et al. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer. 2009;45(12):2103–9.

    Article  PubMed  Google Scholar 

  125. Queiroz MA, et al. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol. 2015;25(8):2222–30.

    Article  PubMed  Google Scholar 

  126. Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2016;23(2):220–36.

    Article  PubMed  Google Scholar 

  127. Grueneisen J, et al. Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. Investig Radiol. 2014;49(12):808–15.

    Article  Google Scholar 

  128. Beiderwellen K, et al. [18F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging. 2015;42(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang S, et al. Defining PET tumor volume in cervical cancer with hybrid PET/MRI: a comparative study. Nucl Med Commun. 2014;35(7):712–9.

    Article  PubMed  Google Scholar 

  130. Burke WM, et al. Endometrial cancer: a review and current management strategies: part I. Gynecol Oncol. 2014;134(2):385–92.

    Article  PubMed  Google Scholar 

  131. Goldstein RB, et al. Evaluation of the woman with postmenopausal bleeding: Society of Radiologists in Ultrasound-Sponsored Consensus Conference statement. J Ultrasound Med. 2001;20(10):1025–36.

    Article  CAS  PubMed  Google Scholar 

  132. Timmermans A, et al. Endometrial thickness measurement for detecting endometrial cancer in women with postmenopausal bleeding: a systematic review and meta-analysis. Obstet Gynecol. 2010;116(1):160–7.

    Article  PubMed  Google Scholar 

  133. Tirumani SH, Shanbhogue AK, Prasad SR. Current concepts in the diagnosis and management of endometrial and cervical carcinomas. Radiol Clin N Am. 2013;51(6):1087–110.

    Article  PubMed  Google Scholar 

  134. Wong AS, et al. Reappraisal of endometrial thickness for the detection of endometrial cancer in postmenopausal bleeding: a retrospective cohort study. BJOG. 2016;123(3):439–46.

    Article  PubMed  Google Scholar 

  135. www.nccn.org/professionals/physician_gls/f_guidelines.asp., NCCN guidelines.

  136. Nishizawa S, Inubushi M, Okada H. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers. Eur J Nucl Med Mol Imaging. 2005;32(5):549–56.

    Article  PubMed  Google Scholar 

  137. Lerman H, et al. Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med. 2004;45(2):266–71.

    PubMed  Google Scholar 

  138. Lentz SS. Endometrial carcinoma diagnosed by positron emission tomography: a case report. Gynecol Oncol. 2002;86(2):223–4.

    Article  PubMed  Google Scholar 

  139. Nakahara T, et al. F-18 FDG uptake in endometrial cancer. Clin Nucl Med. 2001;26(1):82–3.

    Article  CAS  PubMed  Google Scholar 

  140. Picchio M, et al. High-grade endometrial cancer: value of [18F]FDG PET/CT in preoperative staging. Nucl Med Commun. 2010;31(6):506–12.

    PubMed  Google Scholar 

  141. Antonsen SL, et al. MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer – a multicenter prospective comparative study. Gynecol Oncol. 2013;128(2):300–8.

    Article  CAS  PubMed  Google Scholar 

  142. Nakamura K, et al. The SUVmax of 18F-FDG PET correlates with histological grade in endometrial cancer. Int J Gynecol Cancer. 2010;20(1):110–5.

    Article  PubMed  Google Scholar 

  143. Nakamura K, et al. The measurement of SUVmax of the primary tumor is predictive of prognosis for patients with endometrial cancer. Gynecol Oncol. 2011;123(1):82–7.

    Article  PubMed  Google Scholar 

  144. Signorelli M, et al. Role of the integrated FDG PET/CT in the surgical management of patients with high risk clinical early stage endometrial cancer: detection of pelvic nodal metastases. Gynecol Oncol. 2009;115(2):231–5.

    Article  PubMed  Google Scholar 

  145. Signorelli M, et al. Staging of high-risk endometrial cancer with PET/CT and sentinel lymph node map**. Clin Nucl Med. 2015;40(10):780–5.

    Article  PubMed  Google Scholar 

  146. Husby JA, et al. Metabolic tumor volume on 18F-FDG PET/CT improves preoperative identification of high-risk endometrial carcinoma patients. J Nucl Med. 2015;56(8):1191–8.

    Google Scholar 

  147. Nogami Y, et al. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it. Jpn J Clin Oncol. 2015;45(1):26–34.

    Article  PubMed  Google Scholar 

  148. Kitajima K, et al. Accuracy of integrated FDG-PET/contrast-enhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur Radiol. 2009;19(6):1529–36.

    Article  PubMed  Google Scholar 

  149. Belhocine T, et al. Usefulness of 18F-FDG PET in the post-therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging. 2002;29(9):1132–9.

    Article  CAS  PubMed  Google Scholar 

  150. Sharma P, et al. Carcinoma endometrium: role of 18-FDG PET/CT for detection of suspected recurrence. Clin Nucl Med. 2012;37(7):649–55.

    Article  PubMed  Google Scholar 

  151. Saga T, et al. Clinical value of FDG-PET in the follow up of post-operative patients with endometrial cancer. Ann Nucl Med. 2003;17(3):197–203.

    Article  PubMed  Google Scholar 

  152. Kitajima K, et al. Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced 18F-FDG PET/CT and pelvic MRI. Clin Imaging. 2014;38(4):464–9.

    Article  PubMed  Google Scholar 

  153. Shim SH, et al. Metabolic tumour volume and total lesion glycolysis, measured using preoperative 18F-FDG PET/CT, predict the recurrence of endometrial cancer. BJOG. 2014;121(9):1097–106. discussion 1106.

    Article  PubMed  Google Scholar 

  154. Umesaki N, et al. Positron emission tomography with 18F-fluorodeoxyglucose of uterine sarcoma: a comparison with magnetic resonance imaging and power Doppler imaging. Gynecol Oncol. 2001;80(3):372–7.

    Article  CAS  PubMed  Google Scholar 

  155. Nagamatsu A, et al. Use of 18F-fluorodeoxyglucose positron emission tomography for diagnosis of uterine sarcomas. Oncol Rep. 2010;23(4):1069–76.

    PubMed  Google Scholar 

  156. Cibula D, Oonk MH, Abu-Rustum NR. Sentinel lymph node biopsy in the management of gynecologic cancer. Curr Opin Obstet Gynecol. 2015;27(1):66–72.

    Article  PubMed  Google Scholar 

  157. Abu-Rustum NR, et al. Sentinel lymph node map** for grade 1 endometrial cancer: is it the answer to the surgical staging dilemma? Gynecol Oncol. 2009;113(2):163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Dargent D, Martin X, Mathevet P. Laparoscopic assessment of the sentinel lymph node in early stage cervical cancer. Gynecol Oncol. 2000;79(3):411–5.

    Article  CAS  PubMed  Google Scholar 

  159. Diaz JP, et al. Sentinel lymph node biopsy in the management of early-stage cervical carcinoma. Gynecol Oncol. 2011;120(3):347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Frumovitz M, et al. Lymphatic map** and sentinel node biopsy in women with high-risk endometrial cancer. Gynecol Oncol. 2007;104(1):100–3.

    Article  PubMed  Google Scholar 

  161. Khoury-Collado F, et al. Sentinel lymph node map** for endometrial cancer improves the detection of metastatic disease to regional lymph nodes. Gynecol Oncol. 2011;122(2):251–4.

    Article  CAS  PubMed  Google Scholar 

  162. Lantzsch T, et al. Sentinel node procedure in Ib cervical cancer: a preliminary series. Br J Cancer. 2001;85(6):791–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Malur S, et al. Sentinel lymph node detection in patients with cervical cancer. Gynecol Oncol. 2001;80(2):254–7.

    Article  CAS  PubMed  Google Scholar 

  164. Niikura H, et al. Sentinel lymph node detection in early cervical cancer with combination 99mTc phytate and patent blue. Gynecol Oncol. 2004;94(2):528–32.

    Article  PubMed  Google Scholar 

  165. Pelosi E, et al. Preliminary study of sentinel node identification with 99mTc colloid and blue dye in patients with endometrial cancer. Tumori. 2002;88(3):S9–10.

    CAS  PubMed  Google Scholar 

  166. van Dam PA, et al. Intraoperative sentinel node identification with Technetium-99m-labeled nanocolloid in patients with cancer of the uterine cervix: a feasibility study. Int J Gynecol Cancer. 2003;13(2):182–6.

    Article  PubMed  Google Scholar 

  167. Verheijen RH, et al. Sentinel node detection in cervical cancer. Obstet Gynecol. 2000;96(1):135–8.

    CAS  PubMed  Google Scholar 

  168. Barlin JN, et al. The importance of applying a sentinel lymph node map** algorithm in endometrial cancer staging: beyond removal of blue nodes. Gynecol Oncol. 2012;125(3):531–5.

    Article  PubMed  Google Scholar 

  169. Cibula D, et al. Prognostic significance of low volume sentinel lymph node disease in early-stage cervical cancer. Gynecol Oncol. 2012;124(3):496–501.

    Article  CAS  PubMed  Google Scholar 

  170. Elliott P, et al. Early invasive (FIGO stage IA) carcinoma of the cervix: a clinico-pathologic study of 476 cases. Int J Gynecol Cancer. 2000;10(1):42–52.

    Article  PubMed  Google Scholar 

  171. Sakuragi N, et al. Incidence and distribution pattern of pelvic and paraaortic lymph node metastasis in patients with Stages IB, IIA, and IIB cervical carcinoma treated with radical hysterectomy. Cancer. 1999;85(7):1547–54.

    Article  CAS  PubMed  Google Scholar 

  172. Creasman WT, et al. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group Study. Cancer. 1987;60(8 Suppl):2035–41.

    Article  CAS  PubMed  Google Scholar 

  173. Vogelzang, et al. Comprehensive textbook of genitourinary oncology. Philadelphia: Lippincott Williams & Wilkins. 3rd ed. p. 816.

    Google Scholar 

  174. Kitchener H, et al. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet. 2009;373(9658):125–36.

    Article  CAS  PubMed  Google Scholar 

  175. Chi DS, et al. The incidence of pelvic lymph node metastasis by FIGO staging for patients with adequately surgically staged endometrial adenocarcinoma of endometrioid histology. Int J Gynecol Cancer. 2008;18(2):269–73.

    Article  CAS  PubMed  Google Scholar 

  176. Abu-Rustum N, et al. What is the incidence of isolated paraaortic nodal recurrence in grade 1 endometrial carcinoma? Gynecol Oncol, 2008. 111(1): p. 46–48.

    Google Scholar 

  177. Abu-Rustum NR. Sentinel lymph node map** for endometrial cancer: a modern approach to surgical staging. J Natl Compr Cancer Netw. 2014;12(2):288–97.

    Article  Google Scholar 

  178. Kadkhodayan S, et al. Lymphatic map** and sentinel node biopsy in endometrial cancer--a feasibility study using cervical injection of radiotracer and blue dye. Nucl Med Rev Cent East Eur. 2014;17(2):55–8.

    Article  PubMed  Google Scholar 

  179. van de Lande J, et al. Sentinel lymph node detection in early stage uterine cervix carcinoma: a systematic review. Gynecol Oncol. 2007;106(3):604–13.

    Article  PubMed  Google Scholar 

  180. Ballester M, et al. Detection rate and diagnostic accuracy of sentinel-node biopsy in early stage endometrial cancer: a prospective multicentre study (SENTI-ENDO). Lancet Oncol. 2011;12(5):469–76.

    Article  PubMed  Google Scholar 

  181. How J, et al. Accuracy of sentinel lymph node detection following intra-operative cervical injection for endometrial cancer: a prospective study. Gynecol Oncol. 2012;127(2):332–7.

    Article  PubMed  Google Scholar 

  182. Tausch C, Baege A, Rageth C. Map** lymph nodes in cancer management – role of 99mTc-tilmanocept injection. Onco Targets Ther. 2014;7:1151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Surasi DS, O’Malley J, Bhambhvani P. 99mTc-tilmanocept: a novel molecular agent for lymphatic map** and sentinel lymph node localization. J Nucl Med Technol. 2015;43(2):87–91.

    Article  PubMed  Google Scholar 

  184. Ruscito I, et al. Sentinel node map** in cervical and endometrial cancer: indocyanine green versus other conventional dyes-a meta-analysis. Ann Surg Oncol. 2016;23(11):3749–56.

    Article  PubMed  Google Scholar 

  185. Beavis A, et al. Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer. Gynecol Oncol. 2016;143(2):302–6.

    Google Scholar 

  186. Naaman Y, et al. The Added Value of SPECT/CT in Sentinel Lymph Nodes Map** for Endometrial Carcinoma. Ann Surg Oncol. 2016;23(2):450–5.

    Article  CAS  PubMed  Google Scholar 

  187. Solima E, et al. Diagnostic accuracy of sentinel node in endometrial cancer by using hysteroscopic injection of radiolabeled tracer. Gynecol Oncol. 2012;126(3):419–23.

    Article  PubMed  Google Scholar 

  188. Pandit-Taskar N, et al. Single photon emission computed tomography SPECT-CT improves sentinel node detection and localization in cervical and uterine malignancy. Gynecol Oncol. 2010;117(1):59–64.

    Article  PubMed  Google Scholar 

  189. Hoogendam JP, et al. 99mTc SPECT/CT versus planar lymphoscintigraphy for preoperative sentinel lymph node detection in cervical cancer: a systematic review and metaanalysis. J Nucl Med. 2015;56(5):675–80.

    Article  PubMed  Google Scholar 

  190. Hoogendam JP, et al. Preoperative sentinel node map** with 99mTc-nanocolloid SPECT-CT significantly reduces the intraoperative sentinel node retrieval time in robot assisted laparoscopic cervical cancer surgery. Gynecol Oncol. 2013;129(2):389–94.

    Article  PubMed  Google Scholar 

  191. Klapdor R, et al. Value and advantages of preoperative sentinel lymph node imaging with SPECT/CT in cervical cancer. Int J Gynecol Cancer. 2014;24(2):295–302.

    Article  PubMed  Google Scholar 

  192. Diaz-Feijoo B, et al. Change in clinical management of sentinel lymph node location in early stage cervical cancer: the role of SPECT/CT. Gynecol Oncol. 2011;120(3):353–7.

    Article  PubMed  Google Scholar 

  193. Buda A, et al. Integration of hybrid single-photon emission computed tomography/computed tomography in the preoperative assessment of sentinel node in patients with cervical and endometrial cancer: our experience and literature review. Int J Gynecol Cancer. 2012;22(5):830–5.

    Article  PubMed  Google Scholar 

  194. Kraft O, Havel M. Detection of sentinel lymph nodes in gynecologic tumours by planar scintigraphy and SPECT/CT. Mol Imaging Radionucl Ther. 2012;21(2):47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Raimond E, et al. Impact of sentinel lymph node biopsy on the therapeutic management of early-stage endometrial cancer: results of a retrospective multicenter study. Gynecol Oncol. 2014;133(3):506–11.

    Article  PubMed  Google Scholar 

  196. Bats AS, et al. Contribution of lymphoscintigraphy to intraoperative sentinel lymph node detection in early cervical cancer: analysis of the prospective multicenter SENTICOL cohort. Gynecol Oncol. 2015;137(2):264–9.

    Article  PubMed  Google Scholar 

  197. Frati A, et al. Contribution of lymphoscintigraphy for sentinel lymph node biopsy in women with early stage endometrial cancer: results of the SENTI-ENDO study. Ann Surg Oncol. 2015;22(6):1980–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Pandit-Taskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pandit-Taskar, N., Mahajan, S., Ma, W. (2017). Diagnostic Applications of Nuclear Medicine: Uterine Cancers. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26236-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26236-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26234-5

  • Online ISBN: 978-3-319-26236-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation