Post-transcriptional Regulation by Brain-Derived Neurotrophic Factor in the Nervous System

  • Chapter
  • First Online:
Post-transcriptional Mechanisms in Endocrine Regulation

Abstract

Brain-derived neurotrophic factor (BDNF) is a prominent regulator of activity-dependent neuronal gene expression. Through activation of Tropomyosin-related kinase B (TrkB) receptors, BDNF signaling promotes neuronal growth, survival, and plasticity by regulating both transcription and translation. BDNF produces a modest increase in total cellular translation in neurons, which occurs both in the cell soma and in dendrites. Recent research has demonstrated, however, that the effects of BDNF on translation show a high degree of transcript-selectivity, with specific increases in translation of a restricted subset of pro-growth mRNAs. The selectivity of post-transcriptional changes in gene expression is increasingly understood to underlie protein-synthesis-dependent functions of BDNF, such as in neuronal growth and long-term synaptic plasticity. This review will primarily discuss mechanisms through which BDNF regulates translational specificity both locally and globally, and subsequent physiological responses to BDNF requiring novel translation. Elucidating post-transcriptional mechanisms of gene control and their downstream effects is crucial to understanding the role of BDNF in normal cognitive function and its dysregulation in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aakalu G, Smith WB, Nguyen N, Jiang C, Schuman EM (2001) Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30:489–502

    CAS  PubMed  Google Scholar 

  • Aicardi G, Argilli E, Cappello S, Santi S, Riccio M, Thoenen H, Canossa M (2004) Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 101:15788–15792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172–178

    PubMed  PubMed Central  Google Scholar 

  • Anastasia A, Deinhardt K, Wang S, Martin L, Nichol D, Irmady K, Trinh J, Parada L, Rafii S, Hempstead BL, Kermani P (2014) Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS One 9:87406

    Google Scholar 

  • Andero R, Ressler KJ (2012) Fear extinction and BDNF: translating animal models of PTSD to the clinic. Genes Brain Behav 11:503–512

    CAS  PubMed  Google Scholar 

  • Andreska T, Aufmkolk S, Sauer M, Blum R (2014) High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. FNINS 8:107

    Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    CAS  PubMed  Google Scholar 

  • Bailey CH, Kandel ER, Si K (2004) The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44:49–57

    CAS  PubMed  Google Scholar 

  • Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E (2005) The translation repressor 4E–BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci 25:9581–9590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis and BDNF-dependent phase in the hippocampus. Neuron 53:261–277

    CAS  PubMed  Google Scholar 

  • Bhakar AL, Dolen G, Bear MF (2012) The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 35:417–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bingol B, Schuman EM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144–1148

    CAS  PubMed  Google Scholar 

  • Bradshaw KD, Emptage NJ, Bliss TV (2003) A role for dendritic protein synthesis in hippocampal late LTP. Eur J Neurosci 18:3150–3152

    CAS  PubMed  Google Scholar 

  • Briz V, Hsu YT, Li Y, Lee E, Bi X, Baudry M (2013) Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis. J Neurosci 33:4317–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buffington SA, Huang W, Costa-Mattioli M (2014) Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 37:17–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB (2007) Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3- hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282:12619–12628

    CAS  PubMed  Google Scholar 

  • Castren M, Lampinen KE, Miettinen R, Koponen E, Sipola I, Bakker CE, Oostra BA, Castren E (2002) BDNF regulates the expression of fragile X mental retardation protein mRNA in the hippocampus. Neurobiol Dis 11:221–229

    CAS  PubMed  Google Scholar 

  • Ceman S, O’Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003) Phosphorylation influences the translation state of FMRP-associated polyribosomes. Human Mol Gen 12:3295–3305

    CAS  Google Scholar 

  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49:341–348

    CAS  PubMed  Google Scholar 

  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC et al (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885–889

    Google Scholar 

  • Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol 5:e63

    PubMed  PubMed Central  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17: 2295–2313

    Google Scholar 

  • Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26

    Google Scholar 

  • Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 15:697–699

    CAS  PubMed  Google Scholar 

  • De Rubeis S, Pascuito E, Li KW, Fernandez E, Di Marino D, Buzzi A, Ostroff LE, Klann E, Zwartkruis FJ, Komiyama NH, Grant SG, Poujol C, Choquet D, Achsel T, Posthuma D, Smit AB, Bagni C (2013) CYPIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79:1169–1182

    PubMed  PubMed Central  Google Scholar 

  • Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibanez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–40

    CAS  PubMed  Google Scholar 

  • Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nature Med 14:843–848

    Google Scholar 

  • Ernfors P, Wetmore C, Olson L, Persson H (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5:511–526

    CAS  PubMed  Google Scholar 

  • Ernfors P, Kucera J, Lee KF, Loring J, Jaenisch R (1995) Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol 39:799–807

    CAS  PubMed  Google Scholar 

  • Fauchais AL, Lalloue F, Lise MC, Boumediene A, Preud’homme JL, Vidal E, Jauberteau MO (2008) Role of endogenous brain-derived neurotrophic factor and sortilin in b cell survival. J Immunol 181:3027–38

    CAS  PubMed  Google Scholar 

  • Fifková E, Anderson CL, Young SJ, Van Harreveld A (1982) Effect of anisomycin on stimulation-induced changes in dendritic spines of the dentate granule cells. J Neurocyt 11:183–210

    Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047

    CAS  PubMed  Google Scholar 

  • Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28:697–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin DA, Srivastava T, Dwarakanath D, Pierre P, Nygaard S, Derkach VA, Soderling TR (2012) Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J Neurosci 32:8127–8137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gal-Ben-Ari S, Kenney JW, Ounalia-Saad H, Taha E, David O, Levitan D, Gildish I, Panja D, Pai B, Wibrand K, Simpson TI, Proud CG, Bramham CR, Armstrong JD, Rosenblum K (2012) Consolidation and translation regulation. Learn Mem 19:410–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2004) mTOR signaling to translation. Curr Top Microbiol Immunol 279:169–197

    CAS  PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schler AF (2005) microRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    CAS  PubMed  Google Scholar 

  • Givalois L, Marmigère F, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L (2001) Immobilization stress rapidly and differentially modulates BDNF and TrkB mRNA expression in the pituitary gland of adult male rats. Neuroendocrinology 74:148–159

    CAS  PubMed  Google Scholar 

  • Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L (2004) A single brain-derived neurotrophic factor injection modifies hypothalamo–pituitary–adrenocortical axis activity in adult male rats. Mol Cell Neurosci 27:280–295

    CAS  PubMed  Google Scholar 

  • Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493:371–377

    Google Scholar 

  • Griesbeck O, Parsadanian AS, Sendtner M, Thoenen H (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 42:21–33

    CAS  PubMed  Google Scholar 

  • Guire ES, Oh MC, Soderling TR, Derkach VA (2008) Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci 28:6000–6009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han JM, Sahin M (2011) TSC1/TSC2 signaling in the CNS. FEBS Lett 58:973–980

    Google Scholar 

  • Hanus C, Kochen L, tom Dieck S, Racine V, Sibarita JB, Schuman EM, Ehlers MD (2014) Synaptic control of secretory trafficking in dendrites. Cell Rep 7:1771–1778

    Google Scholar 

  • Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatr 12:656–670

    CAS  Google Scholar 

  • Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 32:276–284

    CAS  PubMed  Google Scholar 

  • Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138:696–708

    CAS  PubMed  Google Scholar 

  • Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5:1177–1184

    CAS  PubMed  Google Scholar 

  • Huang YS, Jung MY, Sarkissian M, Richter JD (2002) N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 21:2139–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Ruiz CR, Eyler EC, Lin K, Meffert MK (2012) Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 148:933–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber LJ, Hempstead B, Donovan MJ (1996) Neurotrophin and neurotrophin receptors in human fetal kidney. Dev Biol 179:369–381

    CAS  PubMed  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2013) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Google Scholar 

  • Inamura N, Nawa H, Takei N (2005) Enhancement of translation elongation in neurons by brain-derived neurotrophic factor: implications for mammalian target of rapamycin signaling. J Neurochem 95:1438–1445

    CAS  PubMed  Google Scholar 

  • Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-30-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–11312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Je HS, Lu Y, Yang F, Nagappan G, Zhou J, Jiang Z et al (2009) Chemically inducible inactivation of protein synthesis in genetically targeted neurons. J Neurosci 29:6761–6766

    Google Scholar 

  • Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, Chao MV (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109:1305–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen T, Johnson AL (2001) Expression and function of brain-derived neurotrophin factor and its receptor, TrkB, in ovarian follicles from the domestic hen. J Exp Biol 204:2087–95

    CAS  PubMed  Google Scholar 

  • Ji Y, Lu Y, Yang F, Shen W, Tang TTT, Feng L, Duan S, Lu B (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13:302–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia JM, Chen Q, Zhou Y, Miao S, Zheng J, Zhang C, **ong ZQ (2008) Brain-derived neurotrophic factor-tropomyosin-related kinase B signaling contributes to activity-dependent changes in synaptic proteins. J Biol Chem 283:21242–21250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6:3031–3038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KR, Fariñas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29:8688–8697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juhila J, Sipila T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I (2011) MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PLoS One 6:e21495

    Google Scholar 

  • Kajiya M, Shiba H, Fujita T, Takeda K, Uchida Y, Kawaguchi H et al (2009) Brain‐derived neurotrophic factor protects cementoblasts from serum starvation‐induced cell death. J Cell Physiol 221:696–706

    Google Scholar 

  • Kalita K, Kharebava G, Zheng JJ, Hetman M (2006) Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity. J Neurosci 26:10020–10032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Schuman EM (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273:1402–1406

    CAS  PubMed  Google Scholar 

  • Kang H, Welcher AA, Shelton D, Schuman EM (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664

    CAS  PubMed  Google Scholar 

  • Kanhema T, Dagestad G, Panja D, Tiron A, Messaoudi E, Havik B, Ying SW, Nairn AC, Sonenberg N, Bramham CR (2006) Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: evidence for compartment-specific translation control. J Neurochem 99:1328–1337

    CAS  PubMed  Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    CAS  PubMed  Google Scholar 

  • Kelleher RJ, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    CAS  PubMed  Google Scholar 

  • Kilian O, Hartmann S, Dongowski N, Karnati S, Baumgart-Vogt E, Hartel FV, Noll T, Schnettler R, Lips KS (2014) BDNF and its TrkB receptor in human fracture healing. Ann Anat 196:286–295

    PubMed  Google Scholar 

  • Klann E, Denver TE (2004) Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 5:931–942

    CAS  PubMed  Google Scholar 

  • Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjeacent to methyl-CpG. Mol Cell 19:667–678

    Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain- derived neurotrophic factor. Proc Natl Acad Sci U S A 92:8856–8860

    Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krug M, Lössner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13:39–42

    CAS  PubMed  Google Scholar 

  • Lai KO, Wong AS, Cheung MC, Xu P, Liang Z, Lok KC, **e H, Palko ME, Yung WH, Tessarollo L, Cheung ZH, Ip NY (2012) TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci 15:1506–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5:45–54

    CAS  PubMed  Google Scholar 

  • Lauterborn JC, Rex CS, Kramár E, Chen LY, Pandyarajan V, Lynch G, Gall CM (2007) Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 27:10685–10694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazo OM, Gonzalez A, Ascaño M, Kuruvilla R, Couve A, Bronfman FC (2013) BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J Neurosci 33:6112–6122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Li W, Calfa G, Larimore J, Pozzo-Miller L (2012) Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A 109:17087–17092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao L, Pilotte J, Xu T, Wong CC, Edelman GM, Vanderklish P, Yates JR (2007) BDNF induces widespread changes in synaptic protein content and upregulates components of the translation machinery: an analysis using high throughput proteomics. J Proteome Res 6:1059–1071

    CAS  PubMed  Google Scholar 

  • Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Mol Brain Res 55:20–27

    CAS  PubMed  Google Scholar 

  • Loohuis NO, Kos A, Marens GJ, Van Bokhoven H, Kasri NN, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    Google Scholar 

  • Louhivuori V, Vicario A, Uutela M, Rantamäki T, Louhivuori LM, Castrén E et al (2011) BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol Dis 41:469–480

    Google Scholar 

  • Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    CAS  PubMed  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugli G, Larson J, Demars MP, Smalheiser NR (2012) Primary microRNA precursor transcripts are localized at post-synaptic densities in adult mouse forebrain. J Neurochem 123:459–466

    CAS  PubMed  Google Scholar 

  • Manadas B, Santos AR, Szabadfi K, Gomes JR, Garbis SD, Fountoulakis M, Duarte CB (2009) BDNF induced changes in the expression of the translation machinery in hippocampal neurons: protein levels and dendritic mRNA. J Proteome Res 8:4536–4552

    CAS  PubMed  Google Scholar 

  • Martinowich K, Lu B (2007) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83

    PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Google Scholar 

  • Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, Nemoto T, Fukata M, Poo MM (2009) Differential activity-dependent secretion of brainderived neurotrophic factor from axon and dendrite. J Neurosci 29:14185–14198

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    CAS  PubMed  Google Scholar 

  • Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–10455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–646

    CAS  PubMed  Google Scholar 

  • Muglia P, Vicente AM, Verga M, King N, Macciardi F, Kennedy JL (2002) Association between the BDNF gene and schizophrenia. Mol Psychiatr 8:146–147

    Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219

    CAS  PubMed  Google Scholar 

  • Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147:1080–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054

    CAS  PubMed  Google Scholar 

  • Narayanan U, Nalavadi V, Nakamoto M, Pallas DC, Ceman S, Bassell GJ, Warren ST (2007) FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J Neurosci 27:14349–14357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikulina EM, Johnston CE, Wang J, Hammer RP (2014) Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 282C:122–138

    Google Scholar 

  • Niere F, Wiklerson JR, Huber KM (2012) Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glumatate receptor-triggered Arc translation and long-term depression. J Neurosci 32:5924–5936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in develo** rat hippocampal slices. Neuron 35:535–545

    CAS  PubMed  Google Scholar 

  • Pardon MC (2010) Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. Vitam Horm 82:185–200

    CAS  PubMed  Google Scholar 

  • Paredes A, Romero C, Dissen GA, DeChiara TM, Reichardt L, Cornea A, Ojeda SR, Xu B (2004) TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary. Dev Biol 267:430–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    CAS  PubMed  Google Scholar 

  • Pfeiffer BE, Huber KM (2006) Current advances in local protein synthesis and synaptic plasticity. J Neurosci 26:7147–7150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poon MM, Choi SH, Jamieson CAM, Geschwind DH, Martin KC (2006) Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci 26:13390–13399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Power AE, Berlau DJ, McGaugh JL, Steward O (2006) Anisomycin infused into the hippocampus fails to block “reconsolidation” but impairs extinction: the role of re-exposure duration. Learn Mem 13:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raab-Graham KF, Haddick PC, Jan YN, Jan LY (2006) Activity and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314:144–148

    CAS  PubMed  Google Scholar 

  • Rao VR, Pintchovski SA, Chin J, Peebles CL, Mitra S, Finkbeiner S (2006) AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat Neurosci 9:887–895

    CAS  PubMed  Google Scholar 

  • Rex CS, Lin CY, Kramár EA, Chen LY, Gall CM, Lynch G (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 27:3017–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, Huang Y, Dawson TM, Snyder SH, Ginty DD (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21:283–294

    CAS  PubMed  Google Scholar 

  • Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    CAS  PubMed  Google Scholar 

  • Rios M (2013) BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 36:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+ Cl cotransporter KCC2 and impairs neuronal Cl-extrusion. J Cell Biol 159:747–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AR, Comprido D, Duarte CB (2010) Regulation of local translation at the synapse by BDNF. Prog Neurobiol 4:505–516

    Google Scholar 

  • Scheetz AJ, Nairn AC, Constantine-Paton M (2000) NMDA receptor-mediated control of protein synthesis at develo** synapses. Nat Neurosci 3:211–216

    CAS  PubMed  Google Scholar 

  • Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME (2004) BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J Neurosci 24:7366–7377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    CAS  PubMed  Google Scholar 

  • Schuhmann B, Dietrich A, Sel S, Hahn C, Klingenspor M, Lommatzsch M, Gudermann T, Braun A, Renz H, Nockher WA (2005) A role for brain-derived neurotrophic factor in B cell development. J Neuroimmunol 163:15–23

    CAS  PubMed  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schunchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–327

    PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genom Biol 5:R13

    Google Scholar 

  • Shinohara Y, Yahagi K, Kawano M, Nishiyori H, Kawazu C, Suzuki N, Manabe R, Hirase H (2011) miRNA profiling of bilateral rat hippocampus CA3 by deep sequencing. Biochem Biophys Res Commun 409:293–298

    Google Scholar 

  • Smalheiser NR (2008) Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. BBA-Gene Reg Mech 1779:678–681

    Google Scholar 

  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromol Med 11:133–140

    CAS  Google Scholar 

  • Smart FM, Edelman GM, Vanderklish PW (2003) BDNF induces translocation of initiation factor 4E to mRNA granules: evidence for a role of synaptic microfilaments and integrins. Proc Natl Acad Sci U S A 100:14403–14408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spears N, Molinek MD, Robinson LL, Fulton N, Cameron H, Shimoda K, Telfer EE, Anderson RA, Price DJ (2003) The role of neurotrophin receptors in female germ-cell survival in mouse and human. Development 130:5481–5491

    CAS  PubMed  Google Scholar 

  • Soule J, Messaoudi E, Bramham CR (2006) Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 34:600–604

    CAS  PubMed  Google Scholar 

  • Srivastava T, Fortin DA, Nygaard S, Kaech S, Sonenberg N, Edelman AM, Soderling TR (2012) Regulation of neuronal mRNA translation by CaM-kinase I phosphorylation of eIF4GII. J Neurosci 32:5620–5630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton PK, Sarvey JM (1984) Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci 4:3080–3088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2:284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325

    CAS  PubMed  Google Scholar 

  • Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY, Black IB (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci U S A 94:8191–8195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58

    CAS  PubMed  Google Scholar 

  • Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H (2001) Brain-derived neurotrophic factor enhances neuronal translation by activation multiple initiation processes: comparison with the effects of insulin. J Biol Chem 276:42818–42825

    CAS  PubMed  Google Scholar 

  • Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, Nawa H (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24:9760–9760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takei N, Kawamura M, Ishizuka Y, Kakiya N, Inamura N, Namba H, Nawa H (2009) Brain-derived neurotrophic factor enhances the basal rate of protein synthesis by increasing active eukaryotic elongation factor 2 levels and promoting translation elongation in cortical neurons. J Biol Chem 284:26340–26348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto-Kimura S, Ageta-Ishihara N, Nonaka M, Adachi-Morishima A, Mano T, Okamura M et al (2007) Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIγ. Neuron 54:755–770

    Google Scholar 

  • Tanaka JI, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Wong L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Soughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3:960–969

    CAS  PubMed  Google Scholar 

  • Tronel S, Milekic MH, Alberini CM (2005) Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol 3:e293

    PubMed  PubMed Central  Google Scholar 

  • Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553:497–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237

    PubMed  Google Scholar 

  • Uutela M, Lindholm J, Louhivuori V, Wei H, Louhivuori LM, Pertovaara A et al (2012) Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav 11:513–523

    Google Scholar 

  • Vessey JP, Schoderboeck L, Gingl E, Luzi E, Riefler J, Di Leva F, Karra D, Thomas S, Kiebler MA, Macchi P (2010) Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function. Proc Natl Acad Sci U S A 107:3222–3227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102:16426–16431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, Martin KC (2009) Synapse-and stimulus–specific local translation during longterm neuronal plasticity. Science 324:1536–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QZ, Lv YH, Gong YH, Li ZF, Xu W, Diao Y, Xu R (2012a) Double-stranded let-7 mimics, potential candidates for cancer gene therapy. J Physiol Biochem 68:107–119

    CAS  PubMed  Google Scholar 

  • Wang W, Zhu JZ, Chang KT, Min KT (2012b) DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. J EMBO 31:3655–3666

    CAS  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 105:9093–9098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wetmore C, Ernfors P, Persson H, Olson L (1990) Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol 109:141–152

    CAS  PubMed  Google Scholar 

  • Will TJ, Tushev G, Kochen L, Nassim-Assir B, Cajigas IJ, Schuman EM (2013) Deep sequencing and high-resolution imaging reveal compartment-specific localization of Bdnf mRNA in hippocampal neurons. Sci Signal 6:rs16

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21:1129–1139

    CAS  PubMed  Google Scholar 

  • Xu B, Zang K, Ruff NL, Zhang YA, McConnell SK, Stryker MP, Reichardt LF (2000) Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26:233–245

    CAS  PubMed  Google Scholar 

  • Yin Y, Edelman GM, Vanderklish PW (2002) The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc Natl Acad Sci U S A 99:2368–2373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Zhang T, Bloch LM (2006) Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci 17:17

    Google Scholar 

  • Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative disease. Nat Rev Neurol 5:311–322

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mollie K. Meffert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amen, A.M., Pham, D.L., Meffert, M.K. (2016). Post-transcriptional Regulation by Brain-Derived Neurotrophic Factor in the Nervous System. In: Menon, PhD, K., Goldstrohm, PhD, A. (eds) Post-transcriptional Mechanisms in Endocrine Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-25124-0_14

Download citation

Publish with us

Policies and ethics

Navigation