Analysis of Biological Networks

  • Chapter
  • First Online:
Distributed and Sequential Algorithms for Bioinformatics

Part of the book series: Computational Biology ((COBO,volume 23))

  • 1897 Accesses

Abstract

Biological processes such as the interaction between proteins or metabolic reactions can be represented by networks which can be modeled by graphs. Biological networks are present in the cell and outside the cell. Our aim in this chapter is to first introduce the networks in the cell and analyze them as graphs. Centrality analysis provides information about the important nodes and edges in biological networks and we describe algorithms to find various centrality measures. The main problems to investigate in the graph structure of a biological network are the module detection, discovery of recurrent subgraphs called network motifs and aligning two or more networks as we discuss. We will see these networks have interesting features such as small-world, scale-free properties which are not found in random networks. All of these problems are discussed in detail in the rest of this part of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 53.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J Theor Biol 223:1–18

    Article  Google Scholar 

  2. Albert R, Barabasi A (2002) The statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  Google Scholar 

  4. Pablo Carbonell P, Anne-Galle Planson A-G, Davide Fichera D, Jean-Loup Faulon J-P (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122

    Article  Google Scholar 

  5. Davidson EH, Rast JP, Oliveri P, Ransick A et al (2020) A genomic regulatory network for development. Science, 295:1669–1678

    Google Scholar 

  6. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  Google Scholar 

  7. Identifying gene regulatory networks from gene expression data

    Google Scholar 

  8. Floyd RW (1962) Algorithm 97: shortest path. Comm ACM 5(6):345

    Article  Google Scholar 

  9. Goh K, Kahng B, Kim D (2005) Graph theoretic analysis of protein interaction networks of eukaryotes. Physica A 357:501–512

    Google Scholar 

  10. He Y, Chen Z, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350

    Google Scholar 

  11. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimers disease. J Neurosci 28:4756–4766

    Article  Google Scholar 

  12. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  Google Scholar 

  13. Junker B (2008) Analysis of biological networks, Chap. 9. Wiley ISBN: 978-0-470-04144-4

    Google Scholar 

  14. Koschtzki D, Lehmann KA, Tenfelde-Podehl D, Zlotowski O (2005) Advanced centrality concepts. Springer-Verlag LNCS Tutorial 3418:83-111, In: Brandes U, Erlebach T (eds) Network analysis: methodological foundations

    Google Scholar 

  15. Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2):89–119

    Article  Google Scholar 

  16. Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192

    Article  Google Scholar 

  17. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos Pantelis GPG, (2011) Using graph theory to analyze biological networks. Biodata Mining 4:10. doi:10.1186/1756-0381-4-10

  18. Perron O (1907) Zur Theorie der Matrices. Mathematische Annalen 64(2):248–263

    Article  Google Scholar 

  19. Phizicky EM, Fields S (1995) Proteinprotein interactionsmethods for detection and analysis. Microbiol Rev 59:94–123

    Google Scholar 

  20. M. Ptashne (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Cell Press and Blackwell Scientific

    Google Scholar 

  21. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabsi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  Google Scholar 

  22. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  Google Scholar 

  23. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    Article  Google Scholar 

  24. Salwinski L, Eisenberg D (2003) Computational methods of analysis of proteinprotein interactions. Curr Opin Struct Biol 13:377–382

    Article  Google Scholar 

  25. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    Article  Google Scholar 

  26. Seidenbecher T, Laxmi TTR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during memory retrieval. Science 301:846–850

    Article  Google Scholar 

  27. Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proc National Acad Sci 102(12):4221–4224

    Google Scholar 

  28. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998

    Article  Google Scholar 

  29. Vitale A (2002) Physical methos. Plant Mol Biol 50:825–836

    Article  Google Scholar 

  30. Vogelstein B, Lane D, Levine A (2000) Surfing the p53 network. Nature 408:307–310

    Article  Google Scholar 

  31. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Erciyes .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erciyes, K. (2015). Analysis of Biological Networks. In: Distributed and Sequential Algorithms for Bioinformatics. Computational Biology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-24966-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24966-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24964-3

  • Online ISBN: 978-3-319-24966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation