A Deeper Look at Dataset Bias

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Included in the following conference series:

Abstract

The presence of a bias in each image data collection has recently attracted a lot of attention in the computer vision community showing the limits in generalization of any learning method trained on a specific dataset. At the same time, with the rapid development of deep learning architectures, the activation values of Convolutional Neural Networks (CNN) are emerging as reliable and robust image descriptors. In this paper we propose to verify the potential of the DeCAF features when facing the dataset bias problem. We conduct a series of analyses looking at how existing datasets differ among each other and verifying the performance of existing debiasing methods under different representations. We learn important lessons on which part of the dataset bias problem can be considered solved and which open questions still need to be tackled.

T. Tommasi—Work done mainly while at KU Leuven, Belgium.

T. Tuytelaars—T. Tommasi and T. Tuytelaars acknowledge the support of the FP7 EC project AXES and of the FP7 ERC Starting Grant 240530 COGNIMUND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More details about the method and the experimental setup can be found in the supplementary material.

References

  1. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS (2007)

    Google Scholar 

  3. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)

    Google Scholar 

  4. Chatfield, K., Simonyan, K., Zisserman, A.: Efficient on-the-fly category retrieval using ConvNets and GPUs. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 129–145. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  6. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML (2014). https://github.com/UCB-ICSI-Vision-Group/decaf-release/

  7. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. In: ICML (2009)

    Google Scholar 

  8. Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR (2009)

    Google Scholar 

  10. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  11. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV (2013)

    Google Scholar 

  12. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML (2013)

    Google Scholar 

  13. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR (2012)

    Google Scholar 

  14. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Griffin, G., Holub, A., Perona, P.: Caltech 256 object category dataset. Technical report UCB/CSD-04-1366, California Institue of Technology (2007)

    Google Scholar 

  16. Hoffman, J., Guadarrama, S., Tzeng, E., Hu, R., Donahue, J., Girshick, R., Darrell, T., Saenko, K.: LSDA: Large scale detection through adaptation. In: NIPS (2014)

    Google Scholar 

  17. Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering latent domains for multisource domain adaptation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 702–715. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Hoffman, J., Tzeng, E., Donahue, J., Jia, Y., Saenko, K., Darrell, T.: One-shot adaptation of supervised deep convolutional models (2014)

    Google Scholar 

  19. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 158–171. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  21. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: ICRA (2011)

    Google Scholar 

  22. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between class attribute transfer. In: CVPR (2009)

    Google Scholar 

  23. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR (2003)

    Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)

    Google Scholar 

  25. Microsoft.: Microsoft Research Cambridge Object Recognition Image Database (2005). http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx

  26. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  27. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN Features off-the-shelf: an Astounding Baseline for Recognition (2014). ar**v:1403.6382

  28. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge (2014). ar**v:1409.0575

  29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV), 1–42 (2015). doi:10.1007/s11263-015-0816-y

  30. Chopra, S., Balakrishnan, S., Gopalan, R.: DLID: deep learning for domain adaptation by interpolating between domains. In: ICML Workshop on Challenges in Representation Learning (2013)

    Google Scholar 

  31. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014)

    Google Scholar 

  33. Tommasi, T., Tuytelaars, T.: A testbed for cross-dataset analysis. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8927, pp. 18–31. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  34. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)

    Google Scholar 

  35. Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  36. **ao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)

    Google Scholar 

  37. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  38. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 834–849. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Tommasi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1136 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T. (2015). A Deeper Look at Dataset Bias. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation