Virtual Rehabilitation

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation II

Abstract

This chapter addresses the current state of the art of virtual rehabilitation by summarizing recent research results that focus on the assessment and remediation of motor impairments using virtual rehabilitation technology. Moreover, strengths and weaknesses of the virtual rehabilitation approach and its technical and clinical implications will be discussed. This overview is an update and extension of a previous virtual rehabilitation chapter with a similar focus. Despite tremendous advancements in virtual reality hardware in the past few years, clinical evidence for the efficacy of virtual rehabilitation methods is still sparse. All recent meta-analyses agree that the potential of virtual reality systems for motor rehabilitation in stroke and traumatic brain injury populations is evident, but that larger clinical trials are needed that address the contribution of individual aspects of virtual rehabilitation systems on different patient populations in acute and chronic stages of neurorehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.oculusvr.com

  2. 2.

    http://www.samsung.com/gearvr/

  3. 3.

    https://www.avegant.com

  4. 4.

    https://www.durovis.com

  5. 5.

    https://www.cardboard.withgoogle.com

  6. 6.

    https://www.zeissvrone.tumblr.com

  7. 7.

    http://www.microsoft.com/en-us/kinectforwindows/develop/

  8. 8.

    https://www.leapmotion.com/

  9. 9.

    http://www.sixense.com/razerhydra

  10. 10.

    http://www.nimblevr.com/

  11. 11.

    http://www.virtuix.com/

  12. 12.

    http://www.cyberith.com/

  13. 13.

    http://www.unity3d.com/

  14. 14.

    https://www.unrealengine.com/

  15. 15.

    http://www.cryengine.com/

  16. 16.

    http://de.playstation.com/ps2/accessories/detail/item51693/EyeToy-USB-Kamera/

  17. 17.

    http://www.blog.leapmotion.com/inside-leap-motion-5-hands-on-tips-for-develo**-in-virtual-reality/

  18. 18.

    http://www.msdn.microsoft.com/en-us/library/jj663791.aspx

  19. 19.

    http://www.static.oculusvr.com/sdk-downloads/documents/OculusBestPractices.pdf

  20. 20.

    http://www.iso.org/iso/catalogue_detail.htm?csnumber=38594

  21. 21.

    https://www.nintendo.de/Wii/Wii-94559.html

  22. 22.

    http://www.motekmedical.com/products/caren/

References

  1. American Heart Association: Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2013). doi:10.1161/01.cir.0000441139.02102.80

  2. Cameirao, M.S., Bermudez, I., Badia, S., Duarte, E., Verschure. P.F.: Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor. Neurol. Neurosci. 29, 287–298 (2011)

    Google Scholar 

  3. Carey, J.R., Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L., et al.: Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125(4), 773–788 (2002). doi:10.1093/brain/awf091

    Article  Google Scholar 

  4. Chang, Y.J., Chen, S.F., Huang, J.D.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011)

    Article  Google Scholar 

  5. Chen, Y., Duff, M., Lehrer, N., Liu, S.M., Blake, P., Wolf, S., Sundaram, H., Rikakis, T.: A novel adaptive mixed reality system for stroke rehabiliation: principles, proof of concept, and preliminary application in 2 patients. Top. Stroke Rehabil. 18(3), 212–230 (2011). doi:10.1310/tsr1803-212

    Article  Google Scholar 

  6. Crosbie, J., McDonough, S., Lennon, S., McNeill, M.: Development of a virtual reality system for the rehabilitation of the upper limb after stroke. Stud. Health Technol. Inform. 117, 218–222 (2005)

    Google Scholar 

  7. European Economic Community: Medical device directive—article 15. http://www.emergogroup.com/resources/regulations-europe/regulations-EU-MDD93-42-EEC (2007)

  8. European Parkinson’s Disease Association: Prevalence according to age bands, http://www.epda.eu.com/en/resources/life-with-parkinsons/part-1/prevalence-of-parkinsons-disease/prevalence-according-to-age-bands/ (2014)

  9. Fluet, G.G., Deutsch, J.E.: Virtual reality for sensorimotor rehabilitation post-stroke: the promise and current state of the field. Curr. Phys. Med. Rehabil. Rep. 1(1), 9–20 (2013). doi:10.1007/s40141-013-0005-2

    Google Scholar 

  10. Fluet, G.G., Merians, A.S., Qiu, Q., Davidow, A., Adamovich, S.V.: Comparing integrated training of the hand and arm with isolated training of the same effectors in persons with stroke using haptically rendered virtual environments, a randomized clinical trial. J. NeuroEng. Rehabil. 11, 126 (2014). doi:10.1186/1743-0003-11-126

    Article  Google Scholar 

  11. Fung, J., Richards, C.L., McFadyen, B.J., Lamontagne, A.: A treadmill and motion coupled virtual reality system for gait training post-stroke, CyberPsychol. Behav. 9(2), 157–162. (2006). doi:10.1089/cpb.2006.9.157

    Google Scholar 

  12. Kimberly, T.J., Samargia, S., Moore, L.G., Shakya, J.K., Lang, C.E.: Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J. Rehabil. Res. Dev. 47(9), 851–862 (2010)

    Article  Google Scholar 

  13. Lange, B., Suma, E.A., Newman, B., Phan, T., Chang, C., Rizzo, A., Bolas, M.T.: Leveraging unencumbered full body control of animated virtual characters for game—based rehabilitation. In: Proceedings of HCL, vol. 14, pp. 243–252 (2011)

    Google Scholar 

  14. Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Datab. Syst. Rev. 9, CD008349 (2011)

    Google Scholar 

  15. Leblanc, S., Paquin, K., Carr, K., Horton, S.: Non-immersive virtual reality for fine motor rehabilitation of functional activities in individuals with chronic stroke: a review. Aging Sci. 1, 105 (2013). doi:10.4172/jasc.1000105

    Google Scholar 

  16. Lehrer, N., Chen, Y., Duff, M., Wolf, S.L., Rikakis, T.: Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation. J. NeuroEng. Rehabil. 8, 54 (2011). doi:10.1186/1743-0003-8-54

    Article  Google Scholar 

  17. Levin, M.F., Weiss, P.L., Keshner, E.A.: Emergence of virtual reality as a tool for upper limb rehabilitation. Phys. Ther. Innovative Technol. (Special Issue, published ahead of print) (2014).doi:10.2522/ptj.20130579

    Google Scholar 

  18. Liepert, J., Graef, S., Uhde, I., Leidner, O., Weiller, C.: Training-induced changes of motor cortex representations in stroke patients. Acto. Neurol. Scand. 101(5), 321–326 (2000). doi:10.1034/j.1600-0404.2000.90337a.x

    Article  Google Scholar 

  19. Liepert, J., Miltner, W.H., Bauder, H., Sommer, M., Dettmers. C., et al.: Motor cortex plasticity during constraint induced movement therapy in stroke patients. Neurosci. Lett., 250(1), 5–8. (1998). doi:10.1016/S0304-3940(98)00386-3

    Google Scholar 

  20. Lohse, K.R., Hilderman, C.G.E., Cheung, K.L., Tatla, S., Van der Loos, H.F.M.: Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 9(3), e93318 (2014). doi:10.1371/journal.pone.0093318

    Article  Google Scholar 

  21. McClanachan, N.J., Gesch, J., Wuthapanich, N., Fleming, J., Kuys, S.S.: Feasibility of gaming console exercise and its effect of endurance, gait and balance in people with an acquired brain injury. Brain Inj. 27(12), 1402–1408 (2013)

    Article  Google Scholar 

  22. Meldrum, D., Glennon, A., Herdman, S., Murray, D., McConn-Walsh, R.: Virtual reality rehabilitation of balance: assessment of the usability of the nintendo wii fit plus. Disabil. Rehabil. Assist. Technol. 7(3), 205–210 (2012)

    Article  Google Scholar 

  23. Ortiz-Catalan, M., Nijenhuis, S., Ambrosch, K., Bovend’Eerdt, T., Koenig, S., Lange, B.: Virtual reality. In: Pons, J.L., Torricelli, D. (eds.) Emerging Therapies in Neurorehabilitation, Biosystems and Biorobotics, pp. 249–267. Springer: eBook (2013). doi:10.1007/978-3-642-38556-8_13

    Google Scholar 

  24. Pietrzak, E., Pullman, S., McGuire, A.: Using virtual reality and videogames for traumatic brain injury rehabilitation: a structured literature review. Games Health J.: Res. Dev. Clin. Appl. 3(4), 202–214 (2014)

    Article  Google Scholar 

  25. Population Reference Bureau: 2014 World population data sheet, http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf (2014)

  26. Proffitt, R., Lange, B.: User centered design and development of a game for exercise in older adults. Int. J. Technol. Knowl. Soc. 8(5), 95–112 (2013)

    Article  Google Scholar 

  27. Rizzo, A.A., Kim, G.: A SWOT analysis of the field of virtual rehabilitation and therapy. Presence Teleoperators Virtual Environ. 14(2), 1–28 (2005)

    Article  Google Scholar 

  28. Salimi, I., Friel, K.M., Martin, J.H.: Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J. Neurosci. 28, 7426–7434 (2008)

    Article  Google Scholar 

  29. Schuster-Amft, C., Henneke, A., Hartog-Keisker, B., Holper, L., Siekierka, E., et al.: Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disabil. Rehabil. Assist. Technol. (2014). [Epub ahead of print]

    Google Scholar 

  30. Stroke Association: Stroke statistics, http://www.stroke.org.uk/sites/default/files/Stroke%20statistics.pdf (2013)

  31. Tsekleves, E., Paraskevopoulos, I., Warland, A., Kilbride, C.: Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Disabil. Rehabil. Assist. Technol. 13,1–10 (2014). [Epub ahead of print]

    Google Scholar 

  32. United Nations: World population prospects—the 2012 revision—volume I: comprehensive tables, http://esa.un.org/wpp/documentation/pdf/WPP2012_Volume-I_Comprehensive-Tables.pdf (2012)

  33. Yin, C.W., Sien, N.Y., Ying, L.A., Chung, S., Leng, D.T.M.: Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin. Rehabil. 28(11), 1107–1114 (2014). doi:10.1177/0269215514532851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Koenig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bayón-Calatayud, M. et al. (2016). Virtual Rehabilitation. In: Pons, J., Raya, R., González, J. (eds) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-24901-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24901-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24899-8

  • Online ISBN: 978-3-319-24901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation