Detecting Gravitational Waves from Supernovae with Advanced LIGO

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Gravitational waves produced by supernovae can provide insight into the inner dynamics of the explosive death of stars. Thanks to their extremely weak coupling to matter, gravitational waves can carry energy and information away from the densest and most extreme environments in the universe, and as such they offer a unique probe of otherwise inaccessible processes. This is especially true for highly energetic core-collapse supernovae, where the shock reignition mechanism remains unclear. In this chapter we summarize the efforts by the advanced generation of laser interferometers to detect the gravitational wave transients emitted by the death of a massive star. Mechanisms of gravitational wave production in supernovae, gravitational wave detector status and perspectives, and the statistical methodology used to detect these transients are reviewed. While detection of gravitational waves from supernovae with Advanced LIGO is by no means guaranteed, plausible emission mechanisms offer significant discovery potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aasi J, Abadie J, Abbott BP, Abbott R, Abbott T, Abernathy MR et al (2013) Search for long-lived gravitational-wave transients coincident with long gamma ray bursts. Phys Rev D 88(12):122004

    Article  ADS  Google Scholar 

  • Aasi J, Abadie J, Abbott BP, Abbott R, Abbott T, Abernathy MR et al (2015) Advanced LIGO. Class Quant Grav 32:074001

    Article  ADS  Google Scholar 

  • Abadie J, Abbott BP, Abbott R, Abernathy M, Accadia T, Acernese F, Adams C, Adhikari R, Ajith P, Allen B et al (2011a) Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Phys Rev D 83(4):042001

    Article  ADS  Google Scholar 

  • Abadie J et al (LIGO Scientific Collaboration) (2011b) Search for gravitational wave bursts from six magnetars. Astrophys J Lett 734:L35

    Google Scholar 

  • Abadie J, Abbott BP, Abbott R, Adhikari R, Ajith P, Allen B, Allen G et al (2012a) All-sky search for gravitational-wave bursts in the second joint ligo-virgo run. Phys Rev D 85:122007

    Article  ADS  Google Scholar 

  • Abadie J, Abbott BP, Abbott R, Abernathy M, Accadia T, Acernese F, Adams C, Adhikari R, Ajith P, Allen B et al (2012b) Implications for the origin of GRB 051103 from LIGO observations. Astrophys J 755:2

    Article  ADS  Google Scholar 

  • Abbott BP, Abbott R, Adhikari R, Ajith P, Allen B, Allen G et al (2008) Search for gravitational-wave bursts from soft gamma repeaters. Phys Rev Lett 101(21):211102

    Article  ADS  Google Scholar 

  • Abbott BP et al (LIGO Scientific Collaboration) (2009a) Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Phys Rev D 80(10):102001

    Google Scholar 

  • Abbott BP et al (LIGO Scientific Collaboration) (2009b) Search for high frequency gravitational-wave bursts in the first calendar year of LIGO’s fifth science run. Phys Rev D 80:102002

    Google Scholar 

  • Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  • Abdikamalov E, Gossan S, DeMaio AM, Ott CD (2014) Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves. Phys Rev D 90(4):044001

    Article  ADS  Google Scholar 

  • Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P et al (2015) Advanced virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32(2):024001

    Article  ADS  Google Scholar 

  • Ando S, Beacom F, Yüksel H (2005) Detection of neutrinos from supernovae in nearby galaxies. Phys Rev Lett 95:171101

    Article  ADS  Google Scholar 

  • Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H (2013) Interferometer design of the kagra gravitational wave detector. Phys Rev D 88:043007

    Article  ADS  Google Scholar 

  • Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801

    Article  ADS  Google Scholar 

  • Bionta RM, Blewitt G, Bratton CB, Casper D, Ciocio A (1987) Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys Rev Lett 58:1494

    Article  ADS  Google Scholar 

  • Brown JD (2001) Rotational instabilities in post-collapse stellar cores. In: Astrophysical sources for ground-based gravitational wave detectors. AIP conference proceedings, vol 575, pp 234. American Institute of Physics, Melville

    Google Scholar 

  • Burrows A (2013) Colloquium: perspectives on core-collapse supernova theory. Rev Mod Phys 85:245

    Article  ADS  Google Scholar 

  • Burrows A, Hayes J, Fryxell BA (1995) On the nature of core-collapse supernova explosions. Astrophys J 450:830

    Article  ADS  Google Scholar 

  • Cappellaro E, Turatto M, Benetti S, Tsvetkov DY, Bartunov OS, Makarova IN (1993) The rate of supernovae – part two – the selection effects and the frequencies per unit blue luminosity. Astron Astrophys 273:383

    ADS  Google Scholar 

  • Couch SM, Ott CD (2015) The role of turbulence in neutrino-driven core-collapse supernova explosions. Astrophys J 799:5

    Article  ADS  Google Scholar 

  • Dimmelmeier H, Ott CD, Marek A, Janka H-T (2008) Gravitational wave burst signal from core collapse of rotating stars. Phys Rev D 78:064056

    Article  ADS  Google Scholar 

  • Fryer C, New KCB (2011) Gravitational waves from gravitational collapse. Liv Rev Rel 14:1

    Article  Google Scholar 

  • Fryer CL, Holz DE, Hughes SA (2002) Gravitational wave emission from core collapse of massive stars. Astrophys J 565:430

    Article  ADS  Google Scholar 

  • Herant M (1995) The convective engine paradigm for the supernova explosion mechanism and its consequences. Phys Rep 256:117

    Article  ADS  Google Scholar 

  • Hirata K, Kajita T, Koshiba M, Nakahata M, Oyama Y (1987) Observation of a neutrino burst from the supernova SN 1987A. Phys Rev Lett 58:1490

    Article  ADS  Google Scholar 

  • Janka H-T (2012) Explosion mechanisms of core-collapse supernovae. Ann Rev Nucl Part Sci 62:407

    Article  ADS  Google Scholar 

  • Kistler MD, Haxton WC, Yüksel H (2013) Tomography of massive stars from core collapse to supernova shock breakout. Astrophys J 778:81

    Article  ADS  Google Scholar 

  • Kotake K (2013) Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. C R Phys 14:318

    Article  ADS  Google Scholar 

  • Kotake K, Iwakami W, Ohnishi N, Yamada S (2009) Stochastic nature of gravitational waves from supernova explosions with standing accretion shock instability. Astrophys J Lett 697:L133

    Article  ADS  Google Scholar 

  • Kuroda T, Takiwaki T, Kotake K (2014) Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores. Phys Rev D 89(4):044011

    Article  ADS  Google Scholar 

  • Lai D, Shapiro SL (1995) Gravitational radiation from rapidly rotating nascent neutron stars. Astrophys J 442:259

    Article  ADS  Google Scholar 

  • Lattimer JM, Prakash M (2001) Neutron star structure and the equation of state. Astrophys J 550:426

    Article  ADS  Google Scholar 

  • Lentz EJ, Bruenn SW, Hix WR, Mezzacappa A, Messer OEB, Endeve E, Blondin JM, Harris JA, Marronetti P, Yakunin KN (2015) Three-dimensional core-collapse supernova simulated using a 15 M sun progenitor. Astrophys J Lett 807:L31

    Article  ADS  Google Scholar 

  • Li W, Leaman J, Chornock R, Filippenko AV, Poznanski D, Ganeshalingam M, Wang X, Modjaz M, Jha S, Foley RJ, Smith N (2011) Nearby supernova rates from the lick observatory supernova search – II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon Not R Astron Soc 412:1441

    Google Scholar 

  • Logue J, Ott CD, Heng IS, Kalmus P, Scargill J (2012) Inferring core-collapse supernova physics with gravitational waves. Phys Rev D 86(4):044023

    Article  ADS  Google Scholar 

  • Lovegrove E, Woosley SE (2013) Very low energy supernovae from neutrino mass loss. Astrophys J 769:109

    Article  ADS  Google Scholar 

  • Müller E, Rampp M, Buras R, Janka H-T, Shoemaker DH (2004) Toward gravitational wave signals from realistic core-collapse supernova models. Astrophys J 603:221

    Article  ADS  Google Scholar 

  • Maoz D, Badenes C (2010) The supernova rate and delay time distribution in the magellanic clouds. Mon Not R Astron Soc 407:1314

    Article  ADS  Google Scholar 

  • Marek A, Janka H-T, Müller E (2009) Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae. Astron Astrophys 496:475

    Article  ADS  Google Scholar 

  • Matzner CD, McKee CF (1999) The expulsion of stellar envelopes in core-collapse supernovae. Astrophys J 510:379

    Article  ADS  Google Scholar 

  • Morozova V, Piro AL, Renzo M, Ott CD, Clausen D, Couch SM, Ellis J, Roberts LF (2015, in press) Light curves of core-collapse supernovae with substantial mass loss using the new open-source supernova explosion code (SNEC). Astrophys J. ar**v:1505.06746

    Google Scholar 

  • Müller B, Janka H-T, Marek A (2013) A new multidimensional general relativistic neutrino hydrodynamics code of core-collapse supernovae. III. Gravitational wave signals from supernova explosion models. Astrophys J 766:43

    Google Scholar 

  • Müller E, Janka H-T, Wongwathanarat A (2012) Parametrized 3D models of neutrino-driven supernova explosions. Neutrino emission asymmetries and gravitational-wave signals. Astron. Astrophys. 537:A63

    Google Scholar 

  • Murphy JW, Ott CD, Burrows A (2009) A model for gravitational wave emission from neutrino-driven core-collapse supernovae. Astrophys J 707:1173

    Article  ADS  Google Scholar 

  • O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730:70

    Article  ADS  Google Scholar 

  • Ott CD (2009) TOPICAL REVIEW: the gravitational-wave signature of core-collapse supernovae. Class Quant Grav 26:063001

    Article  ADS  Google Scholar 

  • Ott CD, Ou S, Tohline JE, Burrows A (2005) One-armed spiral instability in a low-T/ | W | postbounce supernova core. Astrophys J 625:L119

    Article  ADS  Google Scholar 

  • Ott CD, Burrows A, Dessart L, Livne E (2006) A new mechanism for gravitational-wave emission in core-collapse supernovae. Phys Rev Lett 96:201102

    Article  ADS  Google Scholar 

  • Ott CD, Dimmelmeier H, Marek A, Janka H-T, Hawke I, Zink B, Schnetter E (2007) 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. Phys Rev Lett 98:261101

    Article  ADS  Google Scholar 

  • Ott CD, Abdikamalov E, Mösta P, Haas R, Drasco S, O’Connor EP, Reisswig C, Meakin CA, Schnetter E (2013) General-relativistic simulations of three-dimensional core-collapse supernovae. Astrophys J 768:115

    Article  ADS  Google Scholar 

  • Piro AL (2013) Taking the “Un” out of “Unnovae.” Astrophys J Lett 768:L14

    Article  ADS  Google Scholar 

  • Piro AL, Pfahl E (2007) Fragmentation of collapsar disks and the production of gravitational waves. Astrophys J 658:1173

    Article  ADS  Google Scholar 

  • Rampp M, Müller E, Ruffert M (1998) Simulations of non-axisymmetric rotational core collapse. Astron Astrophys 332:969

    ADS  Google Scholar 

  • Saenz RA, Shapiro SL (1979) Gravitational and neutrino radiation from stellar core collapse – improved ellipsoidal model calculations. Astrophys J 229:1107

    Article  ADS  Google Scholar 

  • Scheidegger S, Käppeli R, Whitehouse SC, Fischer T, Liebendörfer M (2010) The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse. Astron Astrophys 514:A51

    Article  ADS  Google Scholar 

  • Shibata M, Sekiguchi Y-I (2005) Three-dimensional simulations of stellar core collapse in full general relativity: nonaxisymmetric dynamical instabilities. Phys Rev D 71:024014

    Article  ADS  Google Scholar 

  • Sutton PJ, Jones G, Chatterji S, Kalmus P, Leonor I, Poprocki S, Rollins J, Searle A, Stein L, Tinto M, Was M (2010) X-pipeline: an analysis package for autonomous gravitational-wave burst searches. N J Phys 12:053034

    Article  Google Scholar 

  • Thuan TX, Ostriker JP (1974) Gravitational radiation from stellar collapse. Astrophys J Lett 191:L105

    Article  ADS  Google Scholar 

  • Vissani F (2015) Comparative analysis of SN 1987A antineutrino fluence. J Phys G Nucl Phys 42(1):013001

    Article  ADS  Google Scholar 

  • Weber J (1966) Observation of the thermal fluctuations of a gravitational-wave detector. Phys Rev Lett 17:1228

    Article  ADS  Google Scholar 

  • Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr BW, Berukoff S, Bose S, Cagnoli G, Casey MM, Churches D, Clubley D, Colacino CN, Crooks DRM, Cutler C, Danzmann K, Davies R, Dupuis R, Elliffe E, Fallnich C, Freise A, Goßler S, Grant A, Grote H, Heinzel G, Heptonstall A, Heurs M, Hewitson M, Hough J, Jennrich O, Kawabe K, Kötter K, Leonhardt V, Lück H, Malec M, McNamara PW, McIntosh SA, Mossavi K, Mohanty S, Mukherjee S, Nagano S, Newton GP, Owen BJ, Palmer D, Papa MA, Plissi MV, Quetschke V, Robertson DI, Robertson NA, Rowan S, Rüdiger A, Sathyaprakash BS, Schilling R, Schutz BF, Senior R, Sintes AM, Skeldon KD, Sneddon P, Stief F, Strain KA, Taylor I, Torrie CI, Vecchio A, Ward H, Weiland U, Welling H, Williams P, Winkler W, Woan G, Zawischa I (2002) The GEO 600 gravitational wave detector. Class Quant Grav 19:1377–1387

    Article  ADS  Google Scholar 

  • Yakunin KN, Marronetti P, Mezzacappa A, Bruenn SW, Lee C-T, Chertkow MA, Hix WR, Blondin JM, Lentz EJ, Messer B, Yoshida S (2010) Gravitational waves from core collapse supernovae. Class Quant Grav 27:194005

    Article  ADS  Google Scholar 

  • Yakunin KN, Mezzacappa A, Marronetti P, Yoshida S, Bruenn SW, Hix WR, Lentz EJ, Messer OEB, Harris JA, Endeve E, Blondin JM, Lingerfelt EJ (2015) Gravitational wave signatures of ab initio two-dimensional core collapse supernova explosion models for 12–25 solar masses stars. Submitted to Phys Rev D ar**v:1505.05824

    Google Scholar 

Download references

Acknowledgements

MZ acknowledges Marek Szczepańczyk for fruitful discussions on the many drafts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Evans, M., Zanolin, M. (2017). Detecting Gravitational Waves from Supernovae with Advanced LIGO. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_10

Download citation

Publish with us

Policies and ethics

Navigation