Toward the Identification of Genetic Determinants of Responsiveness to Cancer Immunotherapy

  • Chapter
Developments in T Cell Based Cancer Immunotherapies

Abstract

For a long time, the lack of a human-centered translational approach to tumor immunology has led to the accumulation of a multitude of disjointed clinical and basic researches, followed by a disharmonic growth of scientific knowledge. The huge amount of conjectural hypotheses has competitively interfered with the few evidence-based concepts generated by studies conducted in humans, resulting in several clinical failures and some ‘mysterious’ successes. During the last few years, refined immunotherapies have been shown to induce clinical response and/or improve survival in a significant proportion of cancer patients. Pari passu, high-throughput approaches applied to the analysis of tumor specimens have unveiled unexpected and paradoxical relations between cancer and the immune system. Such studies have described a cancer immune phenotype typified by better prognosis and increased responsiveness to immunotherapeutic approaches. Whether the favorable cancer immune phenotype is dictated by the intrinsic genetics of the tumor or by the genetic makeup of the individual bearing the disease is presently unclear. Here, we focus on molecular biomarkers derived from genomic and genetic studies to summarize the recent advances in our understanding of the mechanisms associated with distinct outcomes in the context of cancer immunotherapy.

The original version of this chapter was revised.

An erratum to this chapter can be found at DOI 10.1007/978-3-319-21167-1_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 80.24
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.11
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 79.11
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116

    CAS  PubMed  Google Scholar 

  2. Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM (1988) Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 318(24):1557–1563. doi:10.1056/NEJM198806163182401

    Article  CAS  PubMed  Google Scholar 

  3. Kirkwood JM, Ernstoff MS, Davis CA, Reiss M, Ferraresi R, Rudnick SA (1985) Comparison of intramuscular and intravenous recombinant alpha-2 interferon in melanoma and other cancers. Ann Intern Med 103(1):32–36

    Article  CAS  PubMed  Google Scholar 

  4. Kirkwood JM, Tarhini AA, Panelli MC et al (2008) Next generation of immunotherapy for melanoma. J Clin Oncol 26(20):3445–3455. doi:10.1200/JCO.2007.14.6423

  5. Mazumder A, Rosenberg SA (1984) Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med 159(2):495–507

    Article  CAS  PubMed  Google Scholar 

  6. Traversari C, van der Bruggen P, Luescher IF et al (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176(5):1453–1457

    Article  CAS  PubMed  Google Scholar 

  7. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647

    Article  PubMed  Google Scholar 

  8. Belli F, Testori A, Rivoltini L et al (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20(20):4169–4180

    Article  CAS  PubMed  Google Scholar 

  9. Marincola FM, Ferrone S (2003) Immunotherapy of melanoma: the good news, the bad ones and what to do next. Semin Cancer Biol 13(6):387–389. doi:10.1016/j.semcancer.2003.09.002. pii: S1044579X03000695

  10. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  11. Marincola FM, Wang E, Herlyn M, Seliger B, Ferrone S (2003) Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol 24(6):335–342. pii: S1471490603001169

    Google Scholar 

  12. Schwartzentruber DJ, Lawson DH, Richards JM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127. doi:10.1056/NEJMoa1012863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bedognetti D, Balwit JM, Wang E et al (2011) SITC/iSBTc Cancer immunotherapy biomarkers resource document: online resources and useful tools – a compass in the land of biomarker discovery. J Transl Med 9

    Google Scholar 

  14. Klebanoff CA, Acquavella N, Yu Z, Restifo NP (2011) Therapeutic cancer vaccines: are we there yet? Immunol Rev 239(1):27–44. doi:10.1111/j.1600-065X.2010.00979.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji RR, Chasalow SD, Wang L et al (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031. doi:10.1007/s00262-011-1172-6

    Article  CAS  PubMed  Google Scholar 

  16. Ulloa-Montoya F, Louahed J, Dizier B et al (2013) Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 31(19):2388–2395. doi:10.1200/JCO.2012.44.3762

    Article  CAS  PubMed  Google Scholar 

  17. Wang E, Bedognetti D, Marincola FM (2013) Prediction of response to anticancer immunotherapy using gene signatures. J Clin Oncol. doi:10.1200/JCO.2013.49.2157

    Google Scholar 

  18. Wang E, Miller LD, Ohnmacht GA et al (2002) Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62(13):3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Weiss GR, Grosh WW, Chianese-Bullock KA et al (2011) Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 17(23):7440–7450. doi:10.1158/1078-0432.CCR-11-1650

  20. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi:10.1126/science.1129139

  21. Mlecnik B, Tosolini M, Kirilovsky A et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618. doi:10.1200/JCO.2010.30.5425

  22. Ascierto ML, De Giorgi V, Liu Q et al (2011) An immunologic portrait of cancer. J Transl Med 9:146. doi:10.1186/1479-5876-9-146

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. doi:10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  24. Galon J, Angell Helen K, Bedognetti D, Marincola Francesco M (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  25. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

  26. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526. doi:10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  27. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. doi:10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol. doi:10.1200/jco.2014.59.4358

    PubMed Central  Google Scholar 

  29. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330. doi:10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  30. Tomei S, Wang E, Delogu LG, Marincola FM, Bedognetti D (2014) Non-BRAF-targeted therapy, immunotherapy, and combination therapy for melanoma. Expert Opin Biol Ther. doi:10.1517/14712598.2014.890586

    PubMed  Google Scholar 

  31. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi:10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee DW, Kochenderfer JN, Stetler-Stevenson M et al (2014) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. doi:10.1016/s0140-6736(14)61403-3

  33. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. doi:10.1038/nri3191

    Article  CAS  PubMed  Google Scholar 

  34. Robbins PF, Kassim SH, Tran TL et al (2014) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. doi:10.1158/1078-0432.ccr-14-2708

    Google Scholar 

  35. Ruella M, Kalos M (2014) Adoptive immunotherapy for cancer. Immunol Rev 257(1):14–38. doi:10.1111/imr.12136

    Article  PubMed  Google Scholar 

  36. Bedognetti D, Wang E, Sertoli MR, Marincola FM (2010) Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 9(6):555–565. doi:10.1586/erv.10.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spivey TL, Uccellini L, Ascierto ML et al (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9:174. doi:10.1186/1479-5876-9-174

  38. Wang E, Bedognetti D, Tomei S, Marincola FM (2013) Common pathways to tumor rejection. Ann N Y Acad Sci 1284(1):75–79. doi:10.1111/nyas.12063

    Article  CAS  PubMed  Google Scholar 

  39. Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29(6):256–262. doi:10.1016/j.it.2008.03.002. pii: S1471-4906(08)00111-7

  40. Bedognetti D, Wang E, Sato-Matsushita M, Marincola FM, Ascierto ML (2013) Molecular profiling of immunotherapeutic resistance. In: Cancer immunotherapy: immune suppression and tumor growth, 2nd edn. Elsevier, pp 373–394

    Google Scholar 

  41. Bedognetti D, Spivey TL, Zhao Y et al (2013) CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109(9):2412–2423. doi:10.1038/bjc.2013.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marincola FM (2007) In support of descriptive studies; relevance to translational research. J Transl Med 5:21. doi:10.1186/1479-5876-5-21

  43. Marincola FM (2011) The trouble with translational medicine. J Intern Med 270(2):123–127. doi:10.1111/j.1365-2796.2011.02402.x

    Article  PubMed  Google Scholar 

  44. Carretero R, Wang E, Rodriguez AI et al (2011) Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer. doi:10.1002/ijc.26471

    PubMed Central  Google Scholar 

  45. Panelli MC, Stashower ME, Slade HB et al (2007) Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 8(1):R8. doi:10.1186/gb-2007-8-1-r8

  46. Panelli MC, Wang E, Phan G et al (2002) Gene-expression profiling of the response of peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol 3(7):RESEARCH0035

    Google Scholar 

  47. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706. doi:10.1146/annurev-immunol-020711-075008

    Article  CAS  PubMed  Google Scholar 

  48. Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605. doi:10.1158/0008-5472.CAN-11-1316

    Article  CAS  PubMed  Google Scholar 

  49. Ascierto PA, De Maio E, Bertuzzi S et al (2011) Future perspectives in melanoma research. Meeting report from the “Melanoma Research: a bridge Naples-USA. Naples, December 6th–7th 2010”. J Transl Med 9:32. doi:10.1186/1479-5876-9-32. pii: 1479-5876-9-32

  50. Azimi F, Scolyer RA, Rumcheva P et al (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30(21):2678–2683. doi:10.1200/JCO.2011.37.8539

    Article  PubMed  Google Scholar 

  51. Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955. doi:10.1200/JCO.2010.30.5037

    Article  PubMed  Google Scholar 

  52. Salgado R, Denkert C, Demaria S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271. doi:10.1093/annonc/mdu450

    Article  CAS  PubMed  Google Scholar 

  53. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124(2):192–198. doi:10.1016/j.ygyno.2011.09.039

    Article  PubMed  Google Scholar 

  54. Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666. doi:10.1056/NEJMoa051424

  55. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113. doi:10.1200/JCO.2009.23.7370

    Article  CAS  PubMed  Google Scholar 

  56. Imanguli MM, Swaim WD, League SC, Gress RE, Pavletic SZ, Hakim FT (2009) Increased T-bet + cytotoxic effectors and type I interferon-mediated processes in chronic graft-versus-host disease of the oral mucosa. Blood 113(15):3620–3630. doi:10.1182/blood-2008-07-168351

  57. Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783. doi:10.1016/S0140-6736(08)60241-X. pii: S0140-6736(08)60241-X

  58. Ascierto ML, Idowu MO, Zhao Y et al (2013) Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. J Transl Med 11:145. doi:10.1186/1479-5876-11-145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ascierto ML, Kmieciak M, Idowu MO et al (2012) A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat 131(3):871–880. doi:10.1007/s10549-011-1470-x

    Article  CAS  PubMed  Google Scholar 

  60. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. doi:10.1038/nature10983

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165. doi:10.1158/1078-0432.CCR-07-4756

    Article  CAS  PubMed  Google Scholar 

  62. Leffers N, Fehrmann RS, Gooden MJ et al (2010) Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer. Br J Cancer 103(5):685–692. doi:10.1038/sj.bjc.6605820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verhaak RG, Tamayo P, Yang JY et al (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 123(1):517–525. doi:10.1172/JCI65833

    CAS  PubMed  Google Scholar 

  64. Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177348/3/203

  65. Mann GJ, Pupo GM, Campain AE et al (2013) BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 133(2):509–517. doi:10.1038/jid.2012.283

    Article  CAS  PubMed  Google Scholar 

  66. Messina JL, Fenstermacher DA, Eschrich S et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765. doi:10.1038/srep00765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sivendran S, Chang R, Pham L et al (2014) Dissection of immune gene networks in primary melanoma tumors critical for antitumor surveillance of patients with stage II-III resectable disease. J Invest Dermatol 134(8):2202–2211. doi:10.1038/jid.2014.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moran CJ, Arenberg DA, Huang CC et al (2002) RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clin Cancer Res 8(12):3803–3812

    CAS  PubMed  Google Scholar 

  69. Chew V, Chen J, Lee D et al (2012) Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61(3):427–438. doi:10.1136/gutjnl-2011-300509

    Article  CAS  PubMed  Google Scholar 

  70. Jiang Z, Xu Y, Cai S (2010) CXCL10 expression and prognostic significance in stage II and III colorectal cancer. Mol Biol Rep 37(6):3029–3036. doi:10.1007/s11033-009-9873-z

    Article  CAS  PubMed  Google Scholar 

  71. Mlecnik B, Tosolini M, Charoentong P et al (2010) Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138(4):1429–1440. doi:10.1053/j.gastro.2009.10.057. pii: S0016-5085(09)01960-X

  72. Tosolini M, Kirilovsky A, Mlecnik B et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71(4):1263–1271. doi:10.1158/0008-5472.CAN-10-2907

  73. Bedognetti D, Wang E, Marincola FM (2014) Meta-analysis and metagenes: CXCL-13-driven signature as a robust marker of intratumoral immune response and predictor of breast cancer chemotherapeutic outcome. Oncoimmunology 3, e28727. doi:10.4161/onci.28727

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ignatiadis M, Singhal SK, Desmedt C et al (2012) Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 30(16):1996–2004. doi:10.1200/JCO.2011.39.5624

    Article  CAS  PubMed  Google Scholar 

  75. Stoll G, Enot D, Mlecnik B, Galon J, Zitvogel L, Kroemer G (2014) Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology 3(1), e27884. doi:10.4161/onci.27884

    Article  PubMed  PubMed Central  Google Scholar 

  76. Perez EA, Thompson EA, Ballman KV et al (2015) Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial. J Clin Oncol. doi:10.1200/jco.2014.57.6298

    Google Scholar 

  77. Harlin H, Meng Y, Peterson AC et al (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69(7):3077–3085. doi:10.1158/0008-5472.CAN-08-2281

  78. Gajewski TF, Louahed J, Brichard VG (2010) Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J 16(4):399–403

    Article  CAS  PubMed  Google Scholar 

  79. Ruiz R, Hunis B, Raez LE (2014) Immunotherapeutic agents in non-small-cell lung cancer finally coming to the front lines. Curr Oncol Rep 16(9):400. doi:10.1007/s11912-014-0400-6

    Article  PubMed  CAS  Google Scholar 

  80. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sznol M (2011) Molecular markers of response to treatment for melanoma. Cancer J 17(2):127–133

    Google Scholar 

  82. Hamid O, Schmidt H, Nissan A et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204. doi:10.1186/1479-5876-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller AJ, Mandik-Nayak L, Prendergast GC (2010) Beyond immunosuppression: reconsidering indoleamine 2,3-dioxygenase as a pathogenic element of chronic inflammation. Immunotherapy 2(3):293–297. doi:10.2217/imt.10.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nagalla S, Chou JW, Willingham MC et al (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 14(4):R34. doi:10.1186/gb-2013-14-4-r34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. doi:10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt M, Hellwig B, Hammad S et al (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695–2703. doi:10.1158/1078-0432.CCR-11-2210

    Article  CAS  PubMed  Google Scholar 

  87. Alistar A, Chou JW, Nagalla S, Black MA, D’Agostino R Jr, Miller LD (2014) Dual roles for immune metagenes in breast cancer prognosis and therapy prediction. Genome Med 6(10):80. doi:10.1186/s13073-014-0080-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538. doi:10.1200/jco.2009.27.2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Prendergast GC, Chang MY, Mandik-Nayak L, Metz R, Muller AJ (2011) Indoleamine 2,3-dioxygenase as a modifier of pathogenic inflammation in cancer and other inflammation-associated diseases. Curr Med Chem 18(15):2257–2262

    Google Scholar 

  90. Scott GN, DuHadaway J, Pigott E et al (2009) The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol 182(12):7509–7517. doi:10.4049/jimmunol.0804328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Correale P, Rotundo MS, Del Vecchio MT et al (2010) Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 33(4):435–441. doi:10.1097/CJI.0b013e3181d32f01

    Article  PubMed  Google Scholar 

  92. Frey DM, Droeser RA, Viehl CT et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126(11):2635–2643. doi:10.1002/ijc.24989

    CAS  PubMed  Google Scholar 

  93. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192. doi:10.1200/JCO.2008.18.7229

    Article  PubMed  Google Scholar 

  94. Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60(7):909–918. doi:10.1007/s00262-011-1046-y

    Article  CAS  PubMed  Google Scholar 

  95. Roncador G, Brown PJ, Maestre L et al (2005) Analysis of FOXP3 protein expression in human CD4 + CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35(6):1681–1691. doi:10.1002/eji.200526189

    Article  CAS  PubMed  Google Scholar 

  96. Walker MR, Kasprowicz DJ, Gersuk VH et al (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4 + CD25- T cells. J Clin Invest 112(9):1437–1443. doi:10.1172/JCI19441

    Article  CAS  PubMed  Google Scholar 

  97. Le DT, Ladle BH, Lee T et al (2011) CD8(+) Foxp3(+) tumor infiltrating lymphocytes accumulate in the context of an effective anti-tumor response. Int J Cancer 129(3):636–647. doi:10.1002/ijc.25693

    Article  CAS  PubMed  Google Scholar 

  98. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074. doi:10.1158/1078-0432.ccr-13-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. doi:10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199. doi:10.1056/NEJMoa1406498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wang E, Uccellini L, Marincola FM (2012) A genetic inference on cancer immune responsiveness. Oncoimmunology 1(4):520–525

    Article  PubMed  PubMed Central  Google Scholar 

  102. Iida N, Dzutsev A, Stewart CA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970. doi:10.1126/science.1240527

    Article  CAS  PubMed  Google Scholar 

  103. Viaud S, Saccheri F, Mignot G et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976. doi:10.1126/science.1240537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zitvogel L, Galluzzi L, Viaud S et al (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps1. doi:10.1126/scitranslmed.3010473

  105. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226(2):148–157. doi:10.1002/path.3029

    Article  CAS  PubMed  Google Scholar 

  106. ** P, Civini S, Zhao Y et al (2014) Direct T cell-tumour interaction triggers TH1 phenotype activation through the modification of the mesenchymal stromal cells transcriptional programme. Br J Cancer 110(12):2955–2964. doi:10.1038/bjc.2014.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeimet AG, Reimer D, Wolf D et al (2009) Intratumoral interferon regulatory factor (IRF)-1 but not IRF-2 is of relevance in predicting patient outcome in ovarian cancer. Int J Cancer 124(10):2353–2360. doi:10.1002/ijc.24214

    Article  CAS  PubMed  Google Scholar 

  108. Callahan MJ, Nagymanyoki Z, Bonome T et al (2008) Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res 14(23):7667–7673. doi:10.1158/1078-0432.CCR-08-0479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Monsurro V, Beghelli S, Wang R et al (2010) Anti-viral state segregates two molecular phenotypes of pancreatic adenocarcinoma: potential relevance for adenoviral gene therapy. J Transl Med 8:10. doi:10.1186/1479-5876-8-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Spivey TL, De Giorgi V, Zhao YD et al (2012) The stable traits of melanoma genetics: an alternate approach to target discovery. BMC Genomics 13. doi:10.1186/1471-2164-13-156

  111. Bindea G, Mlecnik B, Angell HK, Galon J (2014) The immune landscape of human tumors: implications for cancer immunotherapy. Oncoimmunology 3(1), e27456. doi:10.4161/onci.27456

    Article  PubMed  PubMed Central  Google Scholar 

  112. Grivennikov SI, Wang K, Mucida D et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258. doi:10.1038/nature11465

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tomei S, Bedognetti D, De Giorgi V et al (2014) The immune-related role of BRAF in melanoma. Mol Oncol. doi:10.1016/j.molonc.2014.07.014

    PubMed  PubMed Central  Google Scholar 

  114. Liu Q, Tomei S, Ascierto ML et al (2014) Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest 124(5):2147–2159. doi:10.1172/JCI69611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Linsley PS, Speake C, Whalen E, Chaussabel D (2014) Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PLoS One 9(10), e109760. doi:10.1371/journal.pone.0109760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Gu-Trantien C, Loi S, Garaud S et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892. doi:10.1172/JCI67428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mlecnik B, Bindea G, Angell HK et al (2014) Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci Transl Med 6(228):228ra37. doi:10.1126/scitranslmed.3007240

  118. Hoadley KA, Yau C, Wolf DM et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944. doi:10.1016/j.cell.2014.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645. doi:10.1126/science.1251102

    Article  CAS  PubMed  Google Scholar 

  120. van Rooij N, van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442. doi:10.1200/jco.2012.47.7521

    Article  PubMed  Google Scholar 

  121. Rai E, Wakeland EK (2011) Genetic predisposition to autoimmunity—what have we learned? Semin Immunol 23(2):67–83. doi:10.1016/j.smim.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  122. Zhou Q, Yang D, Ombrello AK et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370(10):911–920. doi:10.1056/NEJMoa1307361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ombrello MJ, Remmers EF, Sun G et al (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366(4):330–338. doi:10.1056/NEJMoa1102140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou Q, Lee GS, Brady J et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91(4):713–720. doi:10.1016/j.ajhg.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boisson B, Laplantine E, Prando C et al (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 13(12):1178–1186. doi:10.1038/ni.2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lucas CL, Kuehn HS, Zhao F et al (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 15(1):88–97. doi:10.1038/ni.2771

    Article  CAS  PubMed  Google Scholar 

  127. Orru V, Steri M, Sole G et al (2013) Genetic variants regulating immune cell levels in health and disease. Cell 155(1):242–256. doi:10.1016/j.cell.2013.08.041

    Article  CAS  PubMed  Google Scholar 

  128. Tsang JS, Schwartzberg PL, Kotliarov Y et al (2014) Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157(2):499–513. doi:10.1016/j.cell.2014.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Brien TR (2009) Interferon-alfa, interferon-lambda and hepatitis C. Nat Genet 41(10):1048–1050. doi:10.1038/ng.453

    Article  PubMed  CAS  Google Scholar 

  130. Suppiah V, Moldovan M, Ahlenstiel G et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41(10):1100–1104. doi:10.1038/ng.447

    Article  CAS  PubMed  Google Scholar 

  131. Tanaka Y, Nishida N, Sugiyama M et al (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41(10):1105–1109. doi:10.1038/ng.449

    Article  CAS  PubMed  Google Scholar 

  132. Marincola FM, Shamamian P, Rivoltini L et al (1995) HLA associations in the antitumor response against malignant melanoma. J Immunother Emphasis Tumor Immunol 18(4):242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gogas H, Kirkwood JM, Falk CS et al (2010) Correlation of molecular human leukocyte antigen ty** and outcome in high-risk melanoma patients receiving adjuvant interferon. Cancer 116(18):4326–4333. doi:10.1002/cncr.25211

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang E, Zhao Y, Monaco A et al (2012) A multi-factorial genetic model for prognostic assessment of high risk melanoma patients receiving adjuvant interferon. PLoS One 7(7), e40805. doi:10.1371/journal.pone.0040805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang XY, Zuo D, Sarkar D, Fisher PB (2011) Blockade of cytotoxic T-lymphocyte antigen-4 as a new therapeutic approach for advanced melanoma. Expert Opin Pharmacother 12(17):2695–2706. doi:10.1517/14656566.2011.629187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506–511. doi:10.1038/nature01621

    Article  CAS  PubMed  Google Scholar 

  138. Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 31(6):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Queirolo P, Morabito A, Laurent S et al (2013) Association of CTLA-4 polymorphisms with improved overall survival in melanoma patients treated with CTLA-4 blockade: a pilot study. Cancer Invest 31(5):336–345. doi:10.3109/07357907.2013.793699

    Article  CAS  PubMed  Google Scholar 

  140. Gogas H, Dafni U, Koon H et al (2010) Evaluation of six CTLA-4 polymorphisms in high-risk melanoma patients receiving adjuvant interferon therapy in the He13A/98 multicenter trial. J Transl Med 8:108. doi:10.1186/1479-5876-8-108

  141. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM (2003) Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res 63(19):6424–6431

    CAS  PubMed  Google Scholar 

  142. Barnes BJ, Moore PA, Pitha PM (2001) Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 276(26):23382–23390. doi:10.1074/jbc.M101216200

    Article  CAS  PubMed  Google Scholar 

  143. Graham RR, Kozyrev SV, Baechler EC et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38(5):550–555. doi:10.1038/ng1782

    Article  CAS  PubMed  Google Scholar 

  144. Dawidowicz K, Allanore Y, Guedj M et al (2011) The interferon regulatory factor 5 gene confers susceptibility to rheumatoid arthritis and influences its erosive phenotype. Ann Rheum Dis 70(1):117–121. doi:10.1136/ard.2010.129171

    Article  PubMed  Google Scholar 

  145. Vandenbroeck K, Alloza I, Swaminathan B et al (2011) Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun 12(1):40–45. doi:10.1038/gene.2010.46

    Article  CAS  PubMed  Google Scholar 

  146. Dideberg V, Kristjansdottir G, Milani L et al (2007) An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 16(24):3008–3016. doi:10.1093/hmg/ddm259

    Article  CAS  PubMed  Google Scholar 

  147. Beck KE, Blansfield JA, Tran KQ et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24(15):2283–2289. doi:10.1200/JCO.2005.04.5716

  148. Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100(14):8372–8377. doi:10.1073/pnas.15332091001533209100

  149. Phan GQ, Attia P, Steinberg SM, White DE, Rosenberg SA (2001) Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 19(15):3477–3482

    CAS  PubMed  Google Scholar 

  150. Gogas H, Ioannovich J, Dafni U et al (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354(7):709–718. doi:10.1056/NEJMoa053007

  151. Bouwhuis MG, Suciu S, Collette S et al (2009) Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J Natl Cancer Inst 101(12):869–877. doi:10.1093/jnci/djp132

  152. Bouwhuis MG, Suciu S, Testori A et al (2010) Phase III trial comparing adjuvant treatment with pegylated interferon Alfa-2b versus observation: prognostic significance of autoantibodies—EORTC 18991. J Clin Oncol 28(14):2460–2466. doi:10.1200/JCO.2009.24.6264

  153. Uccellini L, De Giorgi V, Zhao Y et al (2012) IRF5 gene polymorphisms in melanoma. J Transl Med 10(1):170. doi:10.1186/1479-5876-10-170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA (2009) The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother 58(9):1355–1362. doi:10.1007/s00262-009-0686-7

    Article  PubMed  PubMed Central  Google Scholar 

  155. Panelli MC, White R, Foster M et al (2004) Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2(1):17. doi:10.1186/1479-5876-2-171479-5876-2-17

  156. Liu S, Kong C, Wu J, Ying H, Zhu H (2012) Effect of CCR5-Delta32 heterozygosity on HIV-1 susceptibility: a meta-analysis. PLoS One 7(4), e35020. doi:10.1371/journal.pone.0035020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Eri R, Jonsson JR, Pandeya N et al (2004) CCR5-Delta32 mutation is strongly associated with primary sclerosing cholangitis. Genes Immun 5(6):444–450. doi:10.1038/sj.gene.63641136364113

    Article  CAS  PubMed  Google Scholar 

  158. Gomez-Reino JJ, Pablos JL, Carreira PE et al (1999) Association of rheumatoid arthritis with a functional chemokine receptor, CCR5. Arthritis Rheum 42(5):989–992. doi:10.1002/1529-0131(199905)42:5<989::AID-ANR18>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  159. Melum E, Karlsen TH, Broome U et al (2006) The 32-base pair deletion of the chemokine receptor 5 gene (CCR5-Delta32) is not associated with primary sclerosing cholangitis in 363 Scandinavian patients. Tissue Antigens 68(1):78–81. doi:10.1111/j.1399-0039.2006.00604.x

  160. Prahalad S (2006) Negative association between the chemokine receptor CCR5-Delta32 polymorphism and rheumatoid arthritis: a meta-analysis. Genes Immun 7(3):264–268. doi:10.1038/sj.gene.6364298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fischereder M, Luckow B, Hocher B et al (2001) CC chemokine receptor 5 and renal-transplant survival. Lancet 357(9270):1758–1761. pii: S0140673600048984

    Google Scholar 

  162. Ugurel S, Schrama D, Keller G et al (2008) Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol Immunother 57(5):685–691. doi:10.1007/s00262-007-0407-z

    Article  CAS  PubMed  Google Scholar 

  163. Choi JW, Park CS, Hwang M et al (2008) A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J Allergy Clin Immunol 122(6):1119–1126 e7. doi:10.1016/j.jaci.2008.09.026. pii: S0091-6749(08)01721-1

  164. Bedognetti D, Uccellini L, Wang E et al (2010) Evaluation of CXCR3 and CCR5 polymorphisms and gene-expression as predictive biomarkers of clinical response to adoptive therapy in melanoma patients. J Immunother 33(8):860

    Google Scholar 

  165. Fisher B, Packard BS, Read EJ et al (1989) Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 7(2):250–261

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bedognetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bedognetti, D., Tomei, S., Hendrickx, W., Marincola, F.M., Wang, E. (2015). Toward the Identification of Genetic Determinants of Responsiveness to Cancer Immunotherapy. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_5

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation