Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1826 Accesses

Abstract

Immune infiltration of tumors is a well-known phenomenon in cancer patients. Nevertheless, the tumor and immune cell coexisting scenario is often accompanied by efficient cancer progression indicating a compromised immune phenotype. As a matter of fact, it is well documented that a wealthy source of immune-suppressive molecular and cellular networks at the tumor site foster faulty T cell responses and ultimately redirect T cell fate and patient outcome. In this chapter, we summarize recent discoveries of the acquired dysfunctions of effector T cells in the tumor microenvironment due to the lack of proper activation networks and underlying enforcers regulating T cell unresponsiveness and their impact in new therapeutic development. Specifically, the advance in the Th17 balance, T cell stemness, and polyfunctionality of T cells which may improve clinic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274. doi:10.1038/nrc1586, PubMed PMID: 15776005

    Article  CAS  PubMed  Google Scholar 

  2. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477. doi:10.1038/nri2326, PubMed PMID: 18500231

    Article  CAS  PubMed  Google Scholar 

  3. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239, PubMed PMID: 22437870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. doi:10.1038/nrc3237, PubMed PMID: 22437869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crespo J, Sun H, Welling TH, Tian Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25(2):214–221. doi:10.1016/j.coi.2012.12.003, PubMed PMID: 23298609; PubMed Central PMCID: PMC3636159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. doi:10.1038/nri3405, PubMed PMID: 23470321; PubMed Central PMCID: PMC3786574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7(12):4472–4481, PubMed PMID: 2830495; PubMed Central PMCID: PMC368131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169(3950):1042–1049, PubMed PMID: 4194660

    Article  CAS  PubMed  Google Scholar 

  9. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480. doi:10.1146/annurev.iy.07.040189.002305, PubMed PMID: 2653373

    Article  CAS  PubMed  Google Scholar 

  10. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733. doi:10.1146/annurev.immunol.021908.132641, PubMed PMID: 19302050

    Article  CAS  PubMed  Google Scholar 

  11. Schulze-Luehrmann J, Ghosh S (2006) Antigen-receptor signaling to nuclear factor kappa B. Immunity 25(5):701–715. doi:10.1016/j.immuni.2006.10.010, PubMed PMID: 17098202

    Article  CAS  PubMed  Google Scholar 

  12. Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2(4):316–324. doi:10.1038/86318, PubMed PMID: 11276202

    Article  CAS  PubMed  Google Scholar 

  13. Boomer JS, Green JM (2010) An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2(8):a002436. doi:10.1101/cshperspect.a002436, PubMed PMID: 20534709; PubMed Central PMCID: PMC2908766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang K, Chi H (2012) mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol 24(6):421–428. doi:10.1016/j.smim.2012.12.004, PubMed PMID: 23375549; PubMed Central PMCID: PMC3855395

    Article  CAS  PubMed  Google Scholar 

  15. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466, PubMed PMID: 20525992; PubMed Central PMCID: PMC3549297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369. doi:10.1038/70932, PubMed PMID: 10581077

    Article  CAS  PubMed  Google Scholar 

  17. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111(7):3635–3643. doi:10.1182/blood-2007-11-123141, PubMed PMID: 18223165; PubMed Central PMCID: PMC2275025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64(3):1140–1145, PubMed PMID: 14871849

    Article  CAS  PubMed  Google Scholar 

  19. Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B et al (2006) Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer 119(2):317–327. doi:10.1002/ijc.21775, PubMed PMID: 16482562

    Article  CAS  PubMed  Google Scholar 

  20. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567. doi:10.1038/nm863, PubMed PMID: 12704383

    Article  CAS  PubMed  Google Scholar 

  21. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. doi:10.1056/NEJMoa1200694, PubMed PMID: 22658128; PubMed Central PMCID: PMC3563263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi:10.1056/NEJMoa1200690, PubMed PMID: 22658127; PubMed Central PMCID: PMC3544539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dangaj D, Scholler N (2013) Blocking the B7-H4 pathway with novel recombinant antibodies enhances T cell-mediated antitumor responses. Oncoimmunology 2(8), e25913. doi:10.4161/onci.25913, PubMed PMID: 24083083; PubMed Central PMCID: PMC3782523

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881. doi:10.1084/jem.20050930, PubMed PMID: 16606666; PubMed Central PMCID: PMC2118300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tringler B, Zhuo S, Pilkington G, Torkko KC, Singh M, Lucia MS et al (2005) B7-h4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res 11(5):1842–1848. doi:10.1158/1078-0432.CCR-04-1658, PubMed PMID: 15756008

    Article  CAS  PubMed  Google Scholar 

  26. Mugler KC, Singh M, Tringler B, Torkko KC, Liu W, Papkoff J et al (2007) B7-h4 expression in a range of breast pathology: correlation with tumor T-cell infiltration. Appl Immunohistochem Mol Morphol 15(4):363–370. doi:10.1097/01.pai.0000213159.79557.71, PubMed PMID: 18091377

    Article  CAS  PubMed  Google Scholar 

  27. Simon I, Liu Y, Krall KL, Urban N, Wolfert RL, Kim NW et al (2007) Evaluation of the novel serum markers B7-H4, Spondin 2, and DcR3 for diagnosis and early detection of ovarian cancer. Gynecol Oncol 106(1):112–118. doi:10.1016/j.ygyno.2007.03.007, PubMed PMID: 17490732

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Qu QX, Shen Y, Mu CY, Zhu YB, Zhang XG et al (2012) Induced expression of B7-H4 on the surface of lung cancer cell by the tumor-associated macrophages: a potential mechanism of immune escape. Cancer Lett 317(1):99–105. doi:10.1016/j.canlet.2011.11.017, PubMed PMID: 22108530

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK et al (2006) B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 53(2):143–151. doi:10.1016/j.lungcan.2006.05.012, PubMed PMID: 16782226

    Article  PubMed  Google Scholar 

  30. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P et al (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67(18):8900–8905. doi:10.1158/0008-5472.CAN-07-1866, PubMed PMID: 17875732

    Article  CAS  PubMed  Google Scholar 

  31. Zhu G, Augustine MM, Azuma T, Luo L, Yao S, Anand S et al (2009) B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113(8):1759–1767. doi:10.1182/blood-2008-01-133223, PubMed PMID: 19109567; PubMed Central PMCID: PMC2647680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei J, Loke P, Zang X, Allison JP (2011) Tissue-specific expression of B7x protects from CD4 T cell-mediated autoimmunity. J Exp Med 208(8):1683–1694. doi:10.1084/jem.20100639, PubMed PMID: 21727190; PubMed Central PMCID: PMC3149222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang L, Wu H, Lu D, Li G, Sun C, Song H et al (2013) The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene 32(46):5347–5358. doi:10.1038/onc.2012.600, PubMed PMID: 23318460; PubMed Central PMCID: PMC3898118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506, PubMed PMID: 19197294; PubMed Central PMCID: PMC2828349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi:10.1002/eji.201040895, PubMed PMID: 21061430; PubMed Central PMCID: PMC3277452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA et al (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172(7):4410–4417, PubMed PMID: 15034056

    Article  PubMed  Google Scholar 

  37. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689, PubMed PMID: 11123353

    Article  CAS  PubMed  Google Scholar 

  38. Goni O, Alcaide P, Fresno M (2002) Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol 14(10):1125–1134, PubMed PMID: 12356678

    Article  CAS  PubMed  Google Scholar 

  39. Giordanengo L, Guinazu N, Stempin C, Fretes R, Cerban F, Gea S (2002) Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 32(4):1003–1011. doi:10.1002/1521-4141(200204)32:4<1003::AID-IMMU1003>3.0.CO;2-P, PubMed PMID: 11920566

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi:10.1016/j.ccr.2004.08.031, PubMed PMID: 15488763

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K et al (2006) Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12(4):1201–1207. doi:10.1158/1078-0432.CCR-05-1269, PubMed PMID: 16489074

    Article  CAS  PubMed  Google Scholar 

  42. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP et al (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi:10.1053/j.gastro.2008.03.020, PubMed PMID: 18485901

    Article  CAS  PubMed  Google Scholar 

  43. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M et al (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829, PubMed PMID: 17577033

    Article  CAS  PubMed  Google Scholar 

  44. Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS (1999) Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 163(11):6251–6260, PubMed PMID: 10570318

    CAS  PubMed  Google Scholar 

  45. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X et al (2010) Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455. doi:10.1002/pros.21078, PubMed PMID: 19902470; PubMed Central PMCID: PMC2935631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668, PubMed PMID: 16056256

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277(24):21123–21129. doi:10.1074/jbc.M110675200, PubMed PMID: 11950832

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4):1568–1573. doi:10.1182/blood-2006-06-031856, PubMed PMID: 17023580; PubMed Central PMCID: PMC1794048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi:10.1158/0008-5472.CAN-07-6621, PubMed PMID: 18593947; PubMed Central PMCID: PMC2887390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zoso A, Mazza EM, Bicciato S, Mandruzzato S, Bronte V, Serafini P et al (2014) Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion. Eur J Immunol. doi:10.1002/eji.201444522, PubMed PMID: 25113564

    PubMed  Google Scholar 

  51. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999, PubMed PMID: 14707072

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR et al (2003) Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 81(10):664–673. doi:10.1007/s00109-003-0476-1, PubMed PMID: 12928788

    Article  CAS  PubMed  Google Scholar 

  53. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760, PubMed PMID: 11406548

    CAS  PubMed  Google Scholar 

  54. Vickers SM, MacMillan-Crow LA, Green M, Ellis C, Thompson JA (1999) Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 134(3):245–251, PubMed PMID: 10088562

    Article  CAS  PubMed  Google Scholar 

  55. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC et al (2000) Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6(12):4768–4775, PubMed PMID: 11156233

    CAS  PubMed  Google Scholar 

  56. Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I et al (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201(8):1257–1268. doi:10.1084/jem.20042028, PubMed PMID: 15824085; PubMed Central PMCID: PMC2213151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. doi:10.1038/nm1609, PubMed PMID: 17603493; PubMed Central PMCID: PMC2135607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983, PubMed PMID: 17617589

    Article  CAS  PubMed  Google Scholar 

  59. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C et al (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337. doi:10.1084/jem.20082173, PubMed PMID: 19451266; PubMed Central PMCID: PMC2715058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334. doi:10.1146/annurev.immunol.21.120601.141110, PubMed PMID: 12471050

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248(4961):1349–1356, PubMed PMID: 2113314

    Article  CAS  PubMed  Google Scholar 

  62. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182(12):7331–7341. doi:10.4049/jimmunol.0803917, PubMed PMID: 19494254

    Article  CAS  PubMed  Google Scholar 

  63. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69(6):2514–2522. doi:10.1158/0008-5472.CAN-08-4709, PubMed PMID: 19276342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA et al (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71(7):1093–1102, PubMed PMID: 1335364

    Article  CAS  PubMed  Google Scholar 

  65. Gajewski TF (1996) B7-1 but not B7-2 efficiently costimulates CD8+ T lymphocytes in the P815 tumor system in vitro. J Immunol 156(2):465–472, PubMed PMID: 8543795

    CAS  PubMed  Google Scholar 

  66. Brown IE, Blank C, Kline J, Kacha AK, Gajewski TF (2006) Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J Immunol 177(7):4521–4529, PubMed PMID: 16982889

    Article  CAS  PubMed  Google Scholar 

  67. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14(2):145–155, PubMed PMID: 11239447

    Article  CAS  PubMed  Google Scholar 

  68. Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM (1997) Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278(5335):124–128, PubMed PMID: 9311917

    Article  CAS  PubMed  Google Scholar 

  69. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392(6679):933–936. doi:10.1038/31960, PubMed PMID: 9582075

    Article  CAS  PubMed  Google Scholar 

  70. Anandasabapathy N, Ford GS, Bloom D, Holness C, Paragas V, Seroogy C et al (2003) GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18(4):535–547, PubMed PMID: 12705856

    Article  CAS  PubMed  Google Scholar 

  71. Soto-Nieves N, Puga I, Abe BT, Bandyopadhyay S, Baine I, Rao A et al (2009) Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. J Exp Med 206(4):867–876. doi:10.1084/jem.20082731, PubMed PMID: 19307325; PubMed Central PMCID: PMC2715123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C et al (2004) Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21(2):167–177. doi:10.1016/j.immuni.2004.07.013, PubMed PMID: 15308098

    Article  CAS  PubMed  Google Scholar 

  73. Mueller DL (2004) E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 5(9):883–890. doi:10.1038/ni1106, PubMed PMID: 15334084

    Article  CAS  PubMed  Google Scholar 

  74. Thomas RM, Chunder N, Chen C, Umetsu SE, Winandy S, Wells AD (2007) Ikaros enforces the costimulatory requirement for IL2 gene expression and is required for anergy induction in CD4+ T lymphocytes. J Immunol 179(11):7305–7315, PubMed PMID: 18025173

    Article  CAS  PubMed  Google Scholar 

  75. Gao B, Kong Q, Kemp K, Zhao YS, Fang D (2012) Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance. Proc Natl Acad Sci U S A 109(3):899–904. doi:10.1073/pnas.1118462109, PubMed PMID: 22219356; PubMed Central PMCID: PMC3271862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bandyopadhyay S, Dure M, Paroder M, Soto-Nieves N, Puga I, Macian F (2007) Interleukin 2 gene transcription is regulated by Ikaros-induced changes in histone acetylation in anergic T cells. Blood 109(7):2878–2886. doi:10.1182/blood-2006-07-037754, PubMed PMID: 17148585; PubMed Central PMCID: PMC1852212

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zheng Y, Zha Y, Driessens G, Locke F, Gajewski TF (2012) Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J Exp Med 209(12):2157–2163. doi:10.1084/jem.20120342, PubMed PMID: 23129747; PubMed Central PMCID: PMC3501351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng Y, Zha Y, Spaapen RM, Mathew R, Barr K, Bendelac A et al (2013) Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Mol Immunol 55(3–4):283–291. doi:10.1016/j.molimm.2013.03.006, PubMed PMID: 23548837; PubMed Central PMCID: PMC3646929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499, PubMed PMID: 21739672

    Article  CAS  PubMed  Google Scholar 

  80. Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075. doi:10.1158/0008-5472.CAN-09-0901, PubMed PMID: 19826049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V et al (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684. doi:10.1016/j.immuni.2007.09.006, PubMed PMID: 17950003

    Article  CAS  PubMed  Google Scholar 

  82. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37. doi:10.1038/ni.1679, PubMed PMID: 19043418; PubMed Central PMCID: PMC2605166

    Article  CAS  PubMed  Google Scholar 

  83. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. doi:10.1084/jem.20100643, PubMed PMID: 20819927; PubMed Central PMCID: PMC2947065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X et al (2012) Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56(4):1342–1351. doi:10.1002/hep.25777, PubMed PMID: 22505239

    Article  CAS  PubMed  Google Scholar 

  85. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687. doi:10.1038/nature04444, PubMed PMID: 16382236

    Article  CAS  PubMed  Google Scholar 

  86. Duraiswamy J, Freeman GJ, Coukos G (2013) Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 73(23):6900–6912. doi:10.1158/0008-5472.CAN-13-1550, PubMed PMID: 23975756; PubMed Central PMCID: PMC3851914

    Article  CAS  PubMed  Google Scholar 

  87. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L et al (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. doi:10.1172/JCI46102, PubMed PMID: 21555851; PubMed Central PMCID: PMC3104769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117(17):4501–4510. doi:10.1182/blood-2010-10-310425, PubMed PMID: 21385853; PubMed Central PMCID: PMC3099570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C et al (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896. doi:10.1158/0008-5472.CAN-11-2637, PubMed PMID: 22205715; PubMed Central PMCID: PMC3288235

    Article  CAS  PubMed  Google Scholar 

  90. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P et al (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120(1):157–167. doi:10.1172/JCI40070, PubMed PMID: 20038811; PubMed Central PMCID: PMC2799219

    Article  CAS  PubMed  Google Scholar 

  91. ** HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K et al (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 107(33):14733–14738. doi:10.1073/pnas.1009731107, PubMed PMID: 20679213; PubMed Central PMCID: PMC2930455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927. doi:10.1158/0008-5472.CAN-11-1620, PubMed PMID: 22186141; PubMed Central PMCID: PMC3288154

    Article  CAS  PubMed  Google Scholar 

  93. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125. doi:10.1111/j.1600-065X.2009.00767.x, PubMed PMID: 19426218; PubMed Central PMCID: PMC3424066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haymaker C, Wu R, Bernatchez C, Radvanyi L (2012) PD-1 and BTLA and CD8(+) T-cell "exhaustion" in cancer: "exercising" an alternative viewpoint. Oncoimmunology 1(5):735–738. doi:10.4161/onci.20823, PubMed PMID: 22934265; PubMed Central PMCID: PMC3429577

    Article  PubMed  PubMed Central  Google Scholar 

  95. Goldberg MV, Maris CH, Hipkiss EL, Flies AS, Zhen L, Tuder RM et al (2007) Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110(1):186–192. doi:10.1182/blood-2006-12-062422, PubMed PMID: 17392506; PubMed Central PMCID: PMC1896112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adibzadeh M, Pohla H, Rehbein A, Pawelec G (1995) Long-term culture of monoclonal human T lymphocytes: models for immunosenescence? Mech Ageing Dev 83(3):171–183, PubMed PMID: 8583835

    Article  CAS  PubMed  Google Scholar 

  97. Effros RB (1998) Replicative senescence in the immune system: impact of the Hayflick limit on T-cell function in the elderly. Am J Hum Genet 62(5):1003–1007. doi:10.1086/301845, PubMed PMID: 9545415; PubMed Central PMCID: PMC1377102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621, PubMed PMID: 13905658

    Article  CAS  PubMed  Google Scholar 

  99. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347. doi:10.1038/msb.2010.5, PubMed PMID: 20160708; PubMed Central PMCID: PMC2835567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979. doi:10.1038/ncb1909, PubMed PMID: 19597488; PubMed Central PMCID: PMC2743561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222. doi:10.1093/emboj/cdg417, PubMed PMID: 12912919; PubMed Central PMCID: PMC175806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A et al (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192(1):63–75, PubMed PMID: 10880527; PubMed Central PMCID: PMC1887711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295. doi:10.1038/nri2959, PubMed PMID: 21436838

    Article  CAS  PubMed  Google Scholar 

  104. Pawelec G, Solana R (2001) Immunoageing – the cause or effect of morbidity. Trends Immunol 22(7):348–349, PubMed PMID: 11505929

    Article  CAS  PubMed  Google Scholar 

  105. Vallejo AN, Weyand CM, Goronzy JJ (2004) T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med 10(3):119–124. doi:10.1016/j.molmed.2004.01.002, PubMed PMID: 15102354

    Article  CAS  PubMed  Google Scholar 

  106. Montes CL, Chapoval AI, Nelson J, Orhue V, Zhang X, Schulze DH et al (2008) Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res 68(3):870–879. doi:10.1158/0008-5472.CAN-07-2282, PubMed PMID: 18245489

    Article  CAS  PubMed  Google Scholar 

  107. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M et al (2006) Foxp3 expressing CD4+ CD25+ and CD8 + CD28- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67(1–2):1–12. doi:10.1016/j.humimm.2005.11.005, PubMed PMID: 16698419

    Article  CAS  PubMed  Google Scholar 

  108. Tsukishiro T, Donnenberg AD, Whiteside TL (2003) Rapid turnover of the CD8(+)CD28(−) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother 52(10):599–607. doi:10.1007/s00262-003-0395-6, PubMed PMID: 12827303

    Article  PubMed  Google Scholar 

  109. Van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C (2007) DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 204(6):1453–1461. doi:10.1084/jem.20062453, PubMed PMID: 17535972; PubMed Central PMCID: PMC2118600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720. doi:10.1182/blood-2002-07-2103, PubMed PMID: 12433688

    Article  CAS  PubMed  Google Scholar 

  111. Heffner M, Fearon DT (2007) Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci U S A 104(33):13414–13419. doi:10.1073/pnas.0706040104, PubMed PMID: 17686974; PubMed Central PMCID: PMC1941641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167(9):4838–4843, PubMed PMID: 11673487

    Article  CAS  PubMed  Google Scholar 

  113. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186. doi:10.1084/jem.20100637, PubMed PMID: 20819923; PubMed Central PMCID: PMC2947081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D et al (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 207(3):505–520. doi:10.1084/jem.20090397, PubMed PMID: 20176801; PubMed Central PMCID: PMC2839144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rangachari M, Zhu C, Sakuishi K, **ao S, Karman J, Chen A et al (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400. doi:10.1038/nm.2871, PubMed PMID: 22863785; PubMed Central PMCID: PMC3491118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu C, Anderson AC, Schubart A, **ong H, Imitola J, Khoury SJ et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. doi:10.1038/ni1271, PubMed PMID: 16286920

    Article  CAS  PubMed  Google Scholar 

  117. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168, PubMed PMID: 10647940

    Article  CAS  PubMed  Google Scholar 

  118. Fearon DT, Manders P, Wagner SD (2001) Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293(5528):248–250. doi:10.1126/science.1062589, PubMed PMID: 11452114

    Article  CAS  PubMed  Google Scholar 

  119. Gattinoni L, Restifo NP (2013) Moving T memory stem cells to the clinic. Blood 121(4):567–568. doi:10.1182/blood-2012-11-468660, PubMed PMID: 23349370

    Article  CAS  PubMed  Google Scholar 

  120. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2(12):982–987. doi:10.1038/nri959, PubMed PMID: 12461571

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG (2005) Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11(12):1299–1305. doi:10.1038/nm1326, PubMed PMID: 16288282

    Article  CAS  PubMed  Google Scholar 

  122. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E et al (2013) IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121(4):573–584. doi:10.1182/blood-2012-05-431718, PubMed PMID: 23160470

    Article  CAS  PubMed  Google Scholar 

  123. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813. doi:10.1038/nm.1982, PubMed PMID: 19525962; PubMed Central PMCID: PMC2707501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kryczek I, Zhao E, Liu Y, Wang Y, Vatan L, Szeliga W et al (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3(104):104ra0. doi:10.1126/scitranslmed.3002949. PubMed PMID: 21998407; PubMed Central PMCID: PMC3345568

  125. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L et al (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35(6):972–985. doi:10.1016/j.immuni.2011.09.019, PubMed PMID: 22177921; PubMed Central PMCID: PMC3246082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Harari A, Dutoit V, Cellerai C, Bart PA, Du Pasquier RA, Pantaleo G (2006) Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev 211:236–254. doi:10.1111/j.0105-2896.2006.00395.x, PubMed PMID: 16824132

    Article  CAS  PubMed  Google Scholar 

  127. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR et al (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204(6):1405–1416. doi:10.1084/jem.20062363, PubMed PMID: 17535971; PubMed Central PMCID: PMC2118607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC et al (2008) Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 38(2):350–363. doi:10.1002/eji.200737768, PubMed PMID: 18200635; PubMed Central PMCID: PMC2362391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Makedonas G, Betts MR (2006) Polyfunctional analysis of human T cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol 28(3):209–219. doi:10.1007/s00281-006-0025-4, PubMed PMID: 16932955

    Article  PubMed  Google Scholar 

  130. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6):1141–1149. doi:10.1182/blood-2009-03-208249, PubMed PMID: 19470694; PubMed Central PMCID: PMC2723011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ding ZC, Huang L, Blazar BR, Yagita H, Mellor AL, Munn DH et al (2012) Polyfunctional CD4(+) T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood 120(11):2229–2239. doi:10.1182/blood-2011-12-398321, PubMed PMID: 22859605; PubMed Central PMCID: PMC3447781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A 105(51):20410–20415. doi:10.1073/pnas.0810114105, PubMed PMID: 19074257; PubMed Central PMCID: PMC2629307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109(5):1607–1612. doi:10.1073/pnas.1117194109, PubMed PMID: 22160692; PubMed Central PMCID: PMC3277116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei** Zou M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crespo, J., Kryczek, I., Welling, T., Wei, S., Zou, W. (2015). T Cell Fate in the Tumor Microenvironment. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_3

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation