Abstract

Papillomaviruses (PVs) are small, double-stranded, circular DNA viruses that infect mammals, birds, and reptiles. An understanding of these virus replicative cycles is largely derived from studies of bovine papillomavirus (BPV) and human papillomavirus (HPV). With an 8-kilobase (kb) genome encoding only eight major genes, PVs have a limited set of tools with which they can establish an infection. Hence, they depend on host factors to carry out their life cycle. In their preferred niche, keratinocytes, the replicative program of extensively studied HPV types is tightly linked to that of the host. These viruses are preferentially internalized in the basal layer, persist in superficially migrating cells, and manipulate cell cycle and differentiation to facilitate their own propagation. Although much progress has been achieved in understanding PV biology, the precise mechanisms governing the viral replicative cycle, as well as the alterations in the host that lead to cancer, remain incompletely understood. This chapter reviews basic PV biology, then examines in detail the host replication machinery, the different modes and stages of viral replication, and the molecular aspects of the intricate virus–host interplay which occurs during replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbate EA, Berger JM, Botchan MR (2004) The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 18:1981–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abbate EA, Voitenleitner C, Botchan MR (2006) Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell 24:877–889

    CAS  PubMed  Google Scholar 

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167

    CAS  PubMed  Google Scholar 

  • Alderborn A, Burnett S (1994) Regulation of DNA synthesis in division-arrested mouse C127 cells permissive for bovine papillomavirus DNA amplification. J Virol 68:4349–4357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amirian ES, Marquez-Do D, Adler-Storthz K, Follen M, Scheurer ME (2012) The role of polymorphisms in DNA repair genes and HPV 18 integration status in cervical dysplasia. Cancer Epidemiol Biomark Prev 21:1–9

    Google Scholar 

  • Anacker DC, Gautam D, Gillespie KA, Chappell WH, Moody CA (2014) Productive replication of human papillomavirus 31 requires DNA repair factor nbs1. J Virol 88:8528–8544

    PubMed Central  PubMed  Google Scholar 

  • Androphy EJ, Lowy DR, Schiller JT (1987) Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature 325:70–73

    CAS  PubMed  Google Scholar 

  • Balakrishnan L, Bambara RA (2011) Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity. J Biol Chem 286:6865–6870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barsoum J, Prakash SS, Han P, Androphy EJ (1992) Mechanism of action of the papillomavirus E2 repressor: repression in the absence of DNA binding. J Virol 66:3941–3945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauknecht T, Angel P, Royer HD, Zur Hausen H (1992) Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J 11:4607–4617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blow JJ, Ge XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36:405–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botchan M, Berg L, Reynolds J, Lusky M (1986) The bovine papillomavirus replicon. Ciba Found Symp 120:53–67

    CAS  PubMed  Google Scholar 

  • Brown C, Kowalczyk AM, Taylor ER, Morgan IM, Gaston K (2008) P53 represses human papillomavirus type 16 DNA replication via the viral E2 protein. Virol J 5:5

    PubMed Central  PubMed  Google Scholar 

  • Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burnett S, Zabielski J, Moreno-Lopez J, Pettersson U (1989) Evidence for multiple vegetative DNA replication origins and alternative replication mechanisms of bovine papillomavirus type 1. J Mol Biol 206:239–244

    CAS  PubMed  Google Scholar 

  • Carson A, Khan SA (2006) Characterization of transcription factor binding to human papillomavirus type 16 DNA during cellular differentiation. J Virol 80:4356–4362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cerqueira C, Liu Y, Kuhling L, Chai W, Hafezi W, van Kuppevelt TH, Kuhn JE, Feizi T, Schelhaas M (2013) Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell Microbiol 15:1818–1836

    CAS  PubMed  Google Scholar 

  • Chang SW, Tsao YP, Lin CY, Chen SL (2011) NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85:6750–6763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98:10085–10089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen B, Simpson DA, Zhou Y, Mitra A, Mitchell DL, Cordeiro-Stone M, Kaufmann WK (2009) Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 8:1775–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Stenlund A (2000) Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. J Virol 74:1506–1512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 9:2335–2349

    CAS  PubMed  Google Scholar 

  • Chesters PM, McCance DJ (1985) Human papillomavirus type 16 recombinant DNA is maintained as an autonomously replicating episome in monkey kidney cells. J Gen Virol 66(Pt 3):615–620

    CAS  PubMed  Google Scholar 

  • Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT (1992) Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A 89:5799–5803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choo KB, Cheung WF, Liew LN, Lee HH, Han SH (1989) Presence of catenated human papillomavirus type 16 episomes in a cervical carcinoma cell line. J Virol 63:782–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34:1380–1388

    PubMed Central  PubMed  Google Scholar 

  • de Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    PubMed  Google Scholar 

  • Deng W, Lin BY, ** G, Wheeler CG, Ma T, Harper JW, Broker TR, Chow LT (2004) Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase. J Virol 78:13954–13965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donaldson MM, Mackintosh LJ, Bodily JM, Dornan ES, Laimins LA, Morgan IM (2012) An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol 86:12806–12815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durst M, Glitz D, Schneider A, Zur Hausen H (1992) Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189:132–140

    CAS  PubMed  Google Scholar 

  • Edwards TG, Koeller KJ, Slomczynska U, Fok K, Helmus M, Bashkin JK, Fisher C (2011) HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res 91:177–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egawa N, Nakahara T, Ohno S, Narisawa-Saito M, Yugawa T, Fujita M, Yamato K, Natori Y, Kiyono T (2012) The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J Virol 86:3276–3283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan X, Liu Y, Heilman SA, Chen JJ (2013) Human papillomavirus E7 induces rereplication in response to DNA damage. J Virol 87:1200–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filippova M, Evans W, Aragon R, Filippov V, Williams VM, Hong L, Reeves ME, Duerksen-Hughes P (2014) The small splice variant of HPV16 E6, E6, reduces tumor formation in cervical carcinoma xenografts. Virology 450–451:153–164

    PubMed  Google Scholar 

  • Flores ER, Lambert PF (1997) Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol 71:7167–7179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC, Maffa A, del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen CC, White FM, Bradner JE, Yaffe MB (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 498:246–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fradet-Turcotte A, Moody C, Laimins LA, Archambault J (2010a) Nuclear export of human papillomavirus type 31 E1 is regulated by Cdk2 phosphorylation and required for viral genome maintenance. J Virol 84:11747–11760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fradet-Turcotte A, Morin G, Lehoux M, Bullock PA, Archambault J (2010b) Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology 399:65–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gagnon D, Joubert S, Senechal H, Fradet-Turcotte A, Torre S, Archambault J (2009) Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4. J Virol 83:4127–4139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gagnon D, Senechal H, D’Abramo CM, Alvarez J, McBride AA, Archambault J (2013) Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. Virology 439:132–139

    CAS  PubMed  Google Scholar 

  • Geimanen J, Isok-Paas H, Pipitch R, Salk K, Laos T, Orav M, Reinson T, Ustav M, Ustav M, Ustav E (2011) Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses. J Virol 85:3315–3329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie KA, Mehta KP, Laimins LA, Moody CA (2012) Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 86:9520–9526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloss B, Bernard HU (1990) The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element. J Virol 64:5577–5584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloss B, Yeo-Gloss M, Meisterenst M, Rogge L, Winnacker EL, Bernard HU (1989) Clusters of nuclear factor I binding sites identify enhancers of several papillomaviruses but alone are not sufficient for enhancer function. Nucleic Acids Res 17:3519–3533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gopalakrishnan V, Khan SA (1994) E1 protein of human papillomavirus type 1a is sufficient for initiation of viral DNA replication. Proc Natl Acad Sci U S A 91:9597–9601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossel MJ, Sverdrup F, Breiding DE, Androphy EJ (1996) Transcriptional activation function is not required for stimulation of DNA replication by bovine papillomavirus type 1 E2. J Virol 70:7264–7269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guilfoile P, Babcock H (2012) Human papillomavirus. Chelsea House, New York

    Google Scholar 

  • Gunasekharan V, Hache G, Laimins L (2012) Differentiation-dependent changes in levels of C/EBPbeta repressors and activators regulate human papillomavirus type 31 late gene expression. J Virol 86:5393–5398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunasekharan V, Laimins LA (2013) Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 87:6037–6043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartley KA, Alexander KA (2002) Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. J Virol 76:5014–5023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hegde RS (2002) The papillomavirus E2 proteins: structure, function, and biology. Annu Rev Biophys Biomol Struct 31:343–360

    CAS  PubMed  Google Scholar 

  • Hegde RS, Androphy EJ (1998) Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: implications for its DNA binding-site selection mechanism. J Mol Biol 284:1479–1489

    CAS  PubMed  Google Scholar 

  • Hegde RS, Grossman SR, Laimins LA, Sigler PB (1992) Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 359:505–512

    CAS  PubMed  Google Scholar 

  • Hoffmann R, Hirt B, Bechtold V, Beard P, Raj K (2006) Different modes of human papillomavirus DNA replication during maintenance. J Virol 80:4431–4439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong S, Laimins LA (2013) The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 9:e1003295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11

    PubMed Central  PubMed  Google Scholar 

  • Hoskins EE, Morreale RJ, Werner SP, Higginbotham JM, Laimins LA, Lambert PF, Brown DR, Gillison ML, Nuovo GJ, Witte DP, Kim MO, Davies SM, Mehta PA, Butsch Kovacic M, Wikenheiser-Brokamp KA, Wells SI (2012) The fanconi anemia pathway limits human papillomavirus replication. J Virol 86:8131–8138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Clower RV, Melendy T (2006) Cellular topoisomerase I modulates origin binding by bovine papillomavirus type 1 E1. J Virol 80:4363–4371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubert WG, Laimins LA (2002) Human papillomavirus type 31 replication modes during the early phases of the viral life cycle depend on transcriptional and posttranscriptional regulation of E1 and E2 expression. J Virol 76:2263–2273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI, Caldecott KW, Stubenrauch F (2002) Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21:4741–4748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ilves I, Maemets K, Silla T, Janikson K, Ustav M (2006) Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 80:3660–3665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiji T, Lace MJ, Parkkinen S, Anderson RD, Haugen TH, Cripe TP, **ao JH, Davidson I, Chambon P, Turek LP (1992) Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J 11:2271–2281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang G, Plo I, Wang T, Rahman M, Cho JH, Yang E, Lopez BS, **a F (2013) BRCA1-Ku80 protein interaction enhances end-joining fidelity of chromosomal double-strand breaks in the G1 phase of the cell cycle. J Biol Chem 288:8966–8976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang M, Imperiale MJ (2012) Design stars: how small DNA viruses remodel the host nucleus. Future Virol 7:445–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M (2009) Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5:e1000397

    PubMed Central  PubMed  Google Scholar 

  • Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M (2007) Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 26:2180–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy IM, Simpson S, Macnab JC, Clements JB (1987) Human papillomavirus type 16 DNA from a vulvar carcinoma in situ is present as head-to-tail dimeric episomes with a deletion in the non-coding region. J Gen Virol 68(Pt 2):451–462

    CAS  PubMed  Google Scholar 

  • Kristiansen E, Jenkins A, Holm R (1994) Coexistence of episomal and integrated HPV16 DNA in squamous cell carcinoma of the cervix. J Clin Pathol 47:253–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhne C, Banks L (1998) E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273:34302–34309

    CAS  PubMed  Google Scholar 

  • Kuo SR, Liu JS, Broker TR, Chow LT (1994) Cell-free replication of the human papillomavirus DNA with homologous viral E1 and E2 proteins and human cell extracts. J Biol Chem 269:24058–24065

    CAS  PubMed  Google Scholar 

  • Kurth I, O’Donnell M (2013) New insights into replisome fluidity during chromosome replication. Trends Biochem Sci 38:195–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusumoto-Matsuo R, Kanda T, Kukimoto I (2011) Rolling circle replication of human papillomavirus type 16 DNA in epithelial cell extracts. Genes Cells 16:23–33

    CAS  PubMed  Google Scholar 

  • Kyo S, Tam A, Laimins LA (1995) Transcriptional activity of human papillomavirus type 31b enhancer is regulated through synergistic interaction of AP1 with two novel cellular factors. Virology 211:184–197

    CAS  PubMed  Google Scholar 

  • Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643–1647

    CAS  PubMed  Google Scholar 

  • Lambert PF (1991) Papillomavirus DNA replication. J Virol 65:3417–3420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert PF, Monk BC, Howley PM (1990) Phenotypic analysis of bovine papillomavirus type 1 E2 repressor mutants. J Virol 64:950–956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Law MF, Lowy DR, Dvoretzky I, Howley PM (1981) Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci U S A 78:2727–2731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AY, Chiang CM (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. J Biol Chem 284:2778–2786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehman CW, Botchan MR (1998) Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci U S A 95:4338–4343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehman CW, King DS, Botchan MR (1997) A papillomavirus E2 phosphorylation mutant exhibits normal transient replication and transcription but is defective in transformation and plasmid retention. J Virol 71:3652–3665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4:1–32

    Google Scholar 

  • Leonard AC, Mechali M (2013) DNA replication origins. Cold Spring Harb Perspect Biol 5:a010116

    PubMed Central  PubMed  Google Scholar 

  • Li R, Botchan MR (1994) Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc Natl Acad Sci U S A 91:7051–7055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lieberman PM, Hu J, Renne R (2007) Maintenance and replication during latency. In: Arvin A, Campadelli-fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis, Cambridge

    Google Scholar 

  • Lim DA, Gossen M, Lehman CW, Botchan MR (1998) Competition for DNA binding sites between the short and long forms of E2 dimers underlies repression in bovine papillomavirus type 1 DNA replication control. J Virol 72:1931–1940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Stenlund A (2010) Mutations in sensor 1 and walker B in the bovine papillomavirus E1 initiator protein mimic the nucleotide-bound state. J Virol 84:1912–1919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowy DR, Dvoretzky I, Shober R, Law MF, Engel L, Howley PM (1980) In vitro tumorigenic transformation by a defined sub-genomic fragment of bovine papilloma virus DNA. Nature 287:72–74

    CAS  PubMed  Google Scholar 

  • Lu JZ, Sun YN, Rose RC, Bonnez W, McCance DJ (1993) Two E2 binding sites (E2BS) alone or one E2BS plus an A/T-rich region are minimal requirements for the replication of the human papillomavirus type 11 origin. J Virol 67:7131–7139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lusky M, Botchan MR (1985) Genetic analysis of bovine papillomavirus type 1 trans-acting replication factors. J Virol 53:955–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macalpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5:a010207

    PubMed  Google Scholar 

  • Mack DH, Laimins LA (1991) A keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate expression of human papillomavirus type 18 in squamous epithelial cells. Proc Natl Acad Sci U S A 88:9102–9106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mannik A, Runkorg K, Jaanson N, Ustav M, Ustav E (2002) Induction of the bovine papillomavirus origin “onion skin”-type DNA replication at high E1 protein concentrations in vivo. J Virol 76:5835–5845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA (2007) Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 43:415–432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masterson PJ, Stanley MA, Lewis AP, Romanos MA (1998) A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. J Virol 72:7407–7419

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride AA (2008) Replication and partitioning of papillomavirus genomes. Adv Virus Res 72:155–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride AA, Bolen JB, Howley PM (1989) Phosphorylation sites of the E2 transcriptional regulatory proteins of bovine papillomavirus type 1. J Virol 63:5076–5085

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride AA, Howley PM (1991) Bovine papillomavirus with a mutation in the E2 serine 301 phosphorylation site replicates at a high copy number. J Virol 65:6528–6534

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride AA, Sakakibara N, Stepp WH, Jang MK (2012) Hitchhiking on host chromatin: how papillomaviruses persist. Biochim Biophys Acta 1819:820–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPhillips MG, Oliveira JG, Spindler JE, Mitra R, McBride AA (2006) Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80:9530–9543

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPhillips MG, Ozato K, McBride AA (2005) Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J Virol 79:8920–8932

    CAS  PubMed Central  PubMed  Google Scholar 

  • McShan GD, Wilson VG (1997) Reconstitution of a functional bovine papillomavirus type 1 origin of replication reveals a modular tripartite replicon with an essential AT-rich element. Virology 237:198–208

    CAS  PubMed  Google Scholar 

  • Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738

    CAS  PubMed  Google Scholar 

  • Melanson SM, Androphy EJ (2009) Topography of bovine papillomavirus E2 protein on the viral genome during the cell cycle. Virology 393:258–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melar-New M, Laimins LA (2010) Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 84:5212–5221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menges CW, Baglia LA, Lapoint R, McCance DJ (2006) Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res 66:5555–5559

    CAS  PubMed  Google Scholar 

  • Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, Kelsey KT (2014) High-risk HPV types and head and neck cancer. Int J Cancer 135:1653–1661

    CAS  PubMed  Google Scholar 

  • Mighty KK, Laimins LA (2011) p63 is necessary for the activation of human papillomavirus late viral functions upon epithelial differentiation. J Virol 85:8863–8869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr IJ, Clark R, Sun S, Androphy EJ, Macpherson P, Botchan MR (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699

    CAS  PubMed  Google Scholar 

  • Moody CA, Fradet-Turcotte A, Archambault J, Laimins LA (2007) Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A 104:19541–19546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody CA, Laimins LA (2009) Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5:e1000605

    PubMed Central  PubMed  Google Scholar 

  • Morin G, Fradet-Turcotte A, di Lello P, Bergeron-Labrecque F, Omichinski JG, Archambault J (2011) A conserved amphipathic helix in the N-terminal regulatory region of the papillomavirus E1 helicase is required for efficient viral DNA replication. J Virol 85:5287–5300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moscufo N, Sverdrup F, Breiding DE, Androphy EJ (1999) Two distinct regions of the BPV1 E1 replication protein interact with the activation domain of E2. Virus Res 65:141–154

    CAS  PubMed  Google Scholar 

  • Muller M, Demeret C (2012) The HPV E2-host protein-protein interactions: a complex hijacking of the cellular network. Open Virol J 6:173–189

    PubMed Central  PubMed  Google Scholar 

  • Muller M, Jacob Y, Jones L, Weiss A, Brino L, Chantier T, Lotteau V, Favre M, Demeret C (2012) Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions. PLoS Pathog 8:e1002761

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connor MJ, Stunkel W, Koh CH, Zimmermann H, Bernard HU (2000) The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol 74:401–410

    PubMed Central  PubMed  Google Scholar 

  • Offord EA, Beard P (1990) A member of the activator protein 1 family found in keratinocytes but not in fibroblasts required for transcription from a human papillomavirus type 18 promoter. J Virol 64:4792–4798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orav M, Henno L, Isok-Paas H, Geimanen J, Ustav M, Ustav E (2013) Recombination-dependent oligomerization of human papillomavirus genomes upon transient DNA replication. J Virol 87:12051–12068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24:867–876

    CAS  PubMed  Google Scholar 

  • Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF (2010) Deficiencies in the fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–9968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park RB, Androphy EJ (2002) Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol 76:11359–11364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pastwa E, Blasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908

    CAS  PubMed  Google Scholar 

  • Penrose KJ, Garcia-Alai M, De Prat-Gay G, McBride AA (2004) Casein Kinase II phosphorylation-induced conformational switch triggers degradation of the papillomavirus E2 protein. J Biol Chem 279:22430–22439

    CAS  PubMed  Google Scholar 

  • Penrose KJ, McBride AA (2000) Proteasome-mediated degradation of the papillomavirus E2-TA protein is regulated by phosphorylation and can modulate viral genome copy number. J Virol 74:6031–6038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piirsoo M, Ustav E, Mandel T, Stenlund A, Ustav M (1996) Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J 15:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittayakhajonwut D, Angeletti PC (2010) Viral trans-factor independent replication of human papillomavirus genomes. Virol J 7:123

    PubMed Central  PubMed  Google Scholar 

  • Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791

    CAS  PubMed  Google Scholar 

  • Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, Woodworth CD, Connor JP, Haugen TH, Smith EM, Kelsey KT, Turek LP, Ahlquist P (2007) Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67:4605–4619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinlan EJ, Culleton SP, Wu SY, Chiang CM, Androphy EJ (2012) Acetylation of conserved lysines in bovine papillomavirus E2 by p300. J Virol 87(3):1497–1507

    Google Scholar 

  • Rabson MS, Yee C, Yang YC, Howley PM (1986) Bovine papillomavirus type 1 3’ early region transformation and plasmid maintenance functions. J Virol 60:626–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, da Silva DM, Schelhaas M, Kast WM (2013) The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol 87:6062–6072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravnan JB, Gilbert DM, ten Hagen KG, Cohen SN (1992) Random-choice replication of extrachromosomal bovine papillomavirus (BPV) molecules in heterogeneous, clonally derived BPV-infected cell lines. J Virol 66:6946–6952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinson T, Toots M, Kadaja M, Pipitch R, Allik M, Ustav E, Ustav M (2013) Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J Virol 87:951–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rho J, Lee S, de Villiers EM, Choe J (1997) Identification of cis-regulatory elements in the upstream regulatory region of human papillomavirus type 59. Virus Res 47:155–166

    CAS  PubMed  Google Scholar 

  • Sakakibara N, Chen D, Jang MK, Kang DW, Luecke HF, Wu SY, Chiang CM, McBride AA (2013a) Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA. PLoS Pathog 9:e1003777

    PubMed Central  PubMed  Google Scholar 

  • Sakakibara N, Chen D, McBride AA (2013b) Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 9:e1003321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara N, Mitra R, McBride AA (2011) The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 85:8981–8995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders CM, Stenlund A (1998) Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J 17:7044–7055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt J, Schlehofer JR, Mergener K, Gissmann L, Zur Hausen H (1989) Amplification of bovine papillomavirus DNA by N-methyl-N’-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus. Virology 172:73–81

    CAS  PubMed  Google Scholar 

  • Schuck S, Ruse C, Stenlund A (2013) CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins. J Virol 87:7668–7679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuck S, Stenlund A (2011) Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol Cell 43:776–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schvartzman JB, Adolph S, Martin-Parras L, Schildkraut CL (1990) Evidence that replication initiates at only some of the potential origins in each oligomeric form of bovine papillomavirus type 1 DNA. Mol Cell Biol 10:3078–3086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedman J, Stenlund A (1995) Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J 14:6218–6228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekhar V, McBride AA (2012) Phosphorylation regulates binding of the human papillomavirus type 8 E2 protein to host chromosomes. J Virol 86:10047–10058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekhar V, Reed SC, McBride AA (2010) Interaction of the betapapillomavirus E2 tethering protein with mitotic chromosomes. J Virol 84:543–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125–13135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin HJ, Joo J, Yoon JH, Yoo CW, Kim JY (2014) Physical status of human papillomavirus integration in cervical cancer is associated with treatment outcome of the patients treated with radiotherapy. PLoS ONE 9:e78995

    PubMed Central  PubMed  Google Scholar 

  • Shin KH, Ahn JH, Kang MK, Lim PK, Yip FK, Baluda MA, Park NH (2006a) HPV-16 E6 oncoprotein impairs the fidelity of DNA end-joining via p53-dependent and -independent pathways. Int J Oncol 28:209–215

    CAS  PubMed  Google Scholar 

  • Shin KH, Kang MK, Kim RH, Kameta A, Baluda MA, Park NH (2006b) Abnormal DNA end-joining activity in human head and neck cancer. Int J Mol Med 17:917–924

    CAS  PubMed  Google Scholar 

  • Shiotani B, Nguyen HD, Hakansson P, Marechal A, Tse A, Tahara H, Zou L (2013) Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep 3:1651–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slebos RJ, Jehmlich N, Brown B, Yin Z, Chung CH, Yarbrough WG, Liebler DC (2013) Proteomic analysis of oropharyngeal carcinomas reveals novel HPV-associated biological pathways. Int J Cancer 132:568–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spangle JM, Munger K (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 84:9398–9407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spardy N, Covella K, Cha E, Hoskins EE, Wells SI, Duensing A, Duensing S (2009) Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res 69:7022–7029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spardy N, Duensing A, Charles D, Haines N, Nakahara T, Lambert PF, Duensing S (2007) The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 81:13265–13270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straub E, Dreer M, Fertey J, Iftner T, Stubenrauch F (2014) The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol 88:937–947

    PubMed Central  PubMed  Google Scholar 

  • Stubenrauch F, Hummel M, Iftner T, Laimins LA (2000) The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 74:1178–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surviladze Z, Sterk RT, Deharo SA, Ozbun MA (2013) Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol 87:2508–2517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A 96:8449–8454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ustav E, Ustav M, Szymanski P, Stenlund A (1993) The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. Proc Natl Acad Sci U S A 90:898–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ustav M, Stenlund A (1991) Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J 10:449–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ustav M, Ustav E, Szymanski P, Stenlund A (1991) Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J 10:4321–4329

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Tine BA, Dao LD, Wu SY, Sonbuchner TM, Lin BY, Zou N, Chiang CM, Broker TR, Chow LT (2004) Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A 101:4030–4035

    PubMed Central  PubMed  Google Scholar 

  • Wallace NA, Gasior SL, Faber ZJ, Howie HL, Deininger PL, Galloway DA (2013) HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology 443:69–79

    CAS  PubMed  Google Scholar 

  • Wallace NA, Robinson K, Howie HL, Galloway DA (2012) HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. PLoS Pathog 8:e1002807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Chen J, Gong Z (2013a) TopBP1 controls BLM protein level to maintain genome stability. Mol Cell 52:667–678

    CAS  PubMed  Google Scholar 

  • Wang X, Helfer CM, Pancholi N, Bradner JE, You J (2013b) Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 87:3871–3884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson R, Fehrmann F, Laimins LA (2005) Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol 79:6732–6740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winokur PL, McBride AA (1992) Separation of the transcriptional activation and replication functions of the bovine papillomavirus-1 E2 protein. EMBO J 11:4111–4118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue Y, Bellanger S, Zhang W, Lim D, Low J, Lunny D, Thierry F (2010) HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. Cancer Res 70:5316–5325

    CAS  PubMed  Google Scholar 

  • Yardimci H, Wang X, Loveland AB, Tappin I, Rudner DZ, Hurwitz J, van Oijen AM, Walter JC (2012) Bypass of a protein barrier by a replicative DNA helicase. Nature 492:205–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • You J (2010) Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta 1799:192–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • You J, Croyle JL, Nishimura A, Ozato K, Howley PM (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117:349–360

    CAS  PubMed  Google Scholar 

  • You J, Schweiger MR, Howley PM (2005) Inhibition of E2 binding to Brd4 enhances viral genome loss and phenotypic reversion of bovine papillomavirus-transformed cells. J Virol 79:14956–14961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu T, Peng YC, Androphy EJ (2007) Mitotic kinesin-like protein 2 binds and colocalizes with papillomavirus E2 during mitosis. J Virol 81:1736–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yukawa K, Butz K, Yasui T, Kikutani H, Hoppe-Seyler F (1996) Regulation of human papillomavirus transcription by the differentiation-dependent epithelial factor Epoc-1/skn-1a. J Virol 70:10–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng ZM, Baker CC (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11:2286–2302

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara P. Culleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Culleton, S.P., Androphy, E.J., Kanginakudru, S. (2015). Papillomavirus Replication. In: Miller, D., Stack, M. (eds) Human Papillomavirus (HPV)-Associated Oropharyngeal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-21100-8_5

Download citation

Publish with us

Policies and ethics

Navigation