Immunoglobulin and MYC Rearrangements in Multiple Myeloma Pathogenesis

  • Chapter
Chromosomal Translocations and Genome Rearrangements in Cancer

Abstract

Multiple myeloma is a post-germinal centre plasma cell tumour that is usually preceded by a pre-malignant condition, monoclonal gammopathy of undetermined significance. Both are characterized by hyperdiploidy and recurrent immunoglobulin gene translocations that all result in the direct or indirect dysregulation of the CCND/RB1 pathway. Analysis of the translocation breakpoints suggests that they most frequently occur as a result of an error during class switch recombination, but also VDJ recombination, and sometimes somatic hypermutation. A rearrangement of the MYC locus is identified in nearly one half of untreated patients with MM, most frequently (>60 %) those with hyperdiploidy, and less frequently (<25 %) those with t(11;14). The rearrangements juxtapose MYC to super-enhancers from elsewhere in the genome, resulting in dysregulated expression of MYC. One-third of the rearrangements involve an immunoglobulin gene enhancer (IGH>IGL>>IGK), and two-thirds one of a variety of non-immunoglobulin gene enhancers that are frequently associated with plasma cell gene expression (e.g., PRDM1, IGJ, FAM46C, TXNDC5, FOXO3). It is likely that early rearrangements of the MYC locus cause the progression of monoclonal gammopathy to multiple myeloma in many patients, and that late rearrangements of the MYC locus, frequently involving an immunoglobulin gene enhancer, contribute to further, often extramedullary, tumour growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuehl WM, Bergsagel PL (2012) Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 122(10):3456–3463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Malpas JS, Bergsagel DE, Kyle R (eds) (2004) Myeloma: biology and management. Oxford University Press, Oxford

    Google Scholar 

  3. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369

    Article  CAS  PubMed  Google Scholar 

  4. Zingone A, Kuehl WM (2011) Pathogenesis of monoclonal gammopathy of undetermined significance and progression to multiple myeloma. Semin Hematol 48(1):4–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G et al (2010) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24(6):1121–1127

    Article  CAS  PubMed  Google Scholar 

  6. Tiedemann RE, Gonzalez-Paz N, Kyle RA, Santana-Davila R, Price-Troska T, Van Wier SA et al (2008) Genetic aberrations and survival in plasma cell leukemia. Leukemia 22(5):1044–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Drexler HG, Matsuo Y (2000) Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia. Leuk Res 24(8):681–703

    Article  CAS  PubMed  Google Scholar 

  8. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187

    Article  CAS  PubMed  Google Scholar 

  9. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335

    CAS  PubMed  Google Scholar 

  10. Dispenzieri A, Katzmann JA, Kyle RA, Larson DR, Melton LJ III, Colby CL et al (2010) Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. Lancet 375:1721–1728

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5(4):251–262

    Article  PubMed  Google Scholar 

  12. Max EE, Fugman S (2013) Immunoglobulins: molecular genetics. In: Paul WE (ed) Fundamental immunology, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 150–182

    Google Scholar 

  13. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM (1996) Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci U S A 93(24):13931–13936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. White MB, Word CJ, Humphries CG, Blattner FR, Tucker PW (1990) Immunoglobulin D switching can occur through homologous recombination in human B cells. Mol Cell Biol 10(7):3690–3699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Greisman HA, Lu Z, Tsai AG, Greiner TC, Yi HS, Lieber MR (2012) IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood 120(14):2864–2867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rossi D, Berra E, Cerri M, Deambrogi C, Barbieri C, Franceschetti S et al (2006) Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica 91(10):1405–1409

    CAS  PubMed  Google Scholar 

  17. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92(9):3025–3034

    CAS  PubMed  Google Scholar 

  18. Bergsagel PL, Kuehl WM (2001) Chromosome translocations in multiple myeloma. Oncogene 20(40):5611–5622

    Article  CAS  PubMed  Google Scholar 

  19. Ahmann GJ, Jalal SM, Juneau AL, Christensen ER, Hanson CA, Dewald GW et al (1998) A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogenet 101(1):7–11

    Article  CAS  PubMed  Google Scholar 

  20. Chiecchio L, Dagrada GP, Ibrahim AH, Dachs Cabanas E, Protheroe RK, Stockley DM et al (2009) Timing of acquisition of deletion 13 in plasma cell dyscrasias is dependent on genetic context. Haematologica 94(12):1708–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kim GY, Gabrea A, Demchenko YN, Bergsagel L, Roschke AV, Kuehl WM (2014) Complex IGH rearrangements in multiple myeloma: frequent detection discrepancies among three different probe sets. Genes Chromosomes Cancer 53(6):467–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M et al (2001) Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 97(3):822–825

    Article  CAS  PubMed  Google Scholar 

  23. Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL et al (2002) Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 99(6):2185–2191

    Article  CAS  PubMed  Google Scholar 

  24. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al (2002) Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 100(4):1417–1424

    CAS  PubMed  Google Scholar 

  25. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK et al (2009) International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 23(12):2210–2221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11):4569–4575

    Article  CAS  PubMed  Google Scholar 

  27. Gabrea A, Martelli ML, Qi Y, Roschke A, Barlogie B, Shaughnessy JD Jr et al (2008) Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumours. Genes Chromosomes Cancer 47(7):573–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gabrea A, Bergsagel PL, Michael Kuehl W (2006) Distinguishing primary and secondary translocations in multiple myeloma. DNA Repair 5(9-10):1225–1233

    Article  CAS  PubMed  Google Scholar 

  29. Affer M, Chesi M, Chen WD, Keats JJ, Demchenko YN, Tamizhmani K et al (2014) Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28:1725–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106(1):296–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bochtler T, Hegenbart U, Cremer FW, Heiss C, Benner A, Hose D et al (2008) Evaluation of the cytogenetic aberration pattern in amyloid light chain amyloidosis as compared with monoclonal gammopathy of undetermined significance reveals common pathways of karyotypic instability. Blood 111(9):4700–4705

    Article  CAS  PubMed  Google Scholar 

  33. Hayman SR, Bailey RJ, Jalal SM, Ahmann GJ, Dispenzieri A, Gertz MA et al (2001) Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 98(7):2266–2268

    Article  CAS  PubMed  Google Scholar 

  34. Chesi M, Bergsagel PL, Kuehl WM (2002) The enigma of ectopic expression of FGFR3 in multiple myeloma: a critical initiating event or just a target for mutational activation during tumor progression. Curr Opin Hematol 9(4):288–293

    Article  PubMed  Google Scholar 

  35. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al (2003) In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101(4):1520–1529

    Article  CAS  PubMed  Google Scholar 

  36. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr (2003) A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101(6):2374–2376

    Article  CAS  PubMed  Google Scholar 

  37. Sawyer JR, Lukacs JL, Munshi N, Desikan KR, Singhal S, Mehta J et al (1998) Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyoty**. Blood 92(11):4269–4278

    CAS  PubMed  Google Scholar 

  38. Sawyer JR, Lukacs JL, Thomas EL, Swanson CM, Goosen LS, Sammartino G et al (2001) Multicolour spectral karyoty** identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 112(1):167–174

    Article  CAS  PubMed  Google Scholar 

  39. Shaughnessy J Jr, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al (2001) Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98(1):217–223

    Article  CAS  PubMed  Google Scholar 

  40. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A et al (2000) Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A 97(1):228–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Vatsveen TK, Tian E, Kresse SH, Meza-Zepeda LA, Gabrea A, Glebov O et al (2009) OH-2, a hyperdiploid myeloma cell line without an IGH translocation, has a complex translocation juxtaposing MYC near MAFB and the IGK locus. Leuk Res 33(12):1670–1677

    Article  CAS  PubMed  Google Scholar 

  42. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Walker BA, Wardell CP, Johnson DC, Kaiser MF, Begum DB, Dahir NB et al (2013) Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 121(17):3413–3419

    Article  CAS  PubMed  Google Scholar 

  44. Gabrea A, Bergsagel PL, Chesi M, Shou Y, Kuehl WM (1999) Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumour cell. Mol Cell 3(1):119–123

    Article  CAS  PubMed  Google Scholar 

  45. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13(9):2124–2130

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 13(15):3487–3495

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM et al (2003) The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102(7):2562–2567

    Article  CAS  PubMed  Google Scholar 

  48. Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S et al (2003) Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 38(3):234–239

    Article  PubMed  Google Scholar 

  49. Chng WJ, Van Wier SA, Ahmann GJ, Winkler JM, Jalal SM, Bergsagel PL et al (2005) A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 106(6):2156–2161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ross FM, Ibrahim AH, Vilain-Holmes A, Winfield MO, Chiecchio L, Protheroe RK et al (2005) Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia 19(9):1634–1642

    Article  CAS  PubMed  Google Scholar 

  51. Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R (2001) Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumours. Blood 98(10):3082–3086

    Article  CAS  PubMed  Google Scholar 

  52. Chiecchio L, Dagrada GP, Protheroe RKM, Stockley DM, Smith AG, Orchard KH et al (2009) Loss of 1p rearrangements of MYC are associated with progression of smouldering myeloma to myeloma: sequential analysis of a single case. Haematologica 94(7):1024–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nora EP, Dekker J, Heard E (2013) Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bioessays 35(9):818–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS et al (2013) Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27(24):2648–2662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947

    Article  CAS  PubMed  Google Scholar 

  56. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110(44):17921–17926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM (2008) Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst 39:25–31

    Article  CAS  Google Scholar 

  59. Yang L et al (2013) Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153(4):919–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB et al (2014) Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J 4, e191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Dib A, Glebov OK, Shou Y, Singer RH, Kuehl WM (2009) A der(8)t(8;11) chromosome in the Karpas-620 myeloma cell line expresses only cyclin D1: yet both cyclin D1 and MYC are repositioned in close proximity to the 3′IGH enhancer. DNA Repair 8(3):330–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Walker BA, Wardell CP, Ross FM, Morgan GJ (2013) Identification of a novel t(7;14) translocation in multiple myeloma resulting in overexpression of EGFR. Genes Chromosomes Cancer 52(9):817–822

    Article  CAS  PubMed  Google Scholar 

  63. Weinhold N, Johnson DC, Chubb D, Chen B, Forsti A, Hosking FJ et al (2013) The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat Genet 45(5):522–525

    Article  CAS  PubMed  Google Scholar 

  64. Lopez-Corral L, Gutierrez NC, Vidriales MB, Mateos MV, Rasillo A, Garcia-Sanz R et al (2011) The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res 17(7):1692–1700

    Article  CAS  PubMed  Google Scholar 

  65. Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp MJ, Harousseau JL et al (1999) 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 59(18):4546–4550

    CAS  PubMed  Google Scholar 

  66. Hebraud B, Caillot D, Corre J, Marit G, Hulin C, Leleu X et al (2013) The translocation t(4;14) can be present only in minor subclones in multiple myeloma. Clin Cancer Res 19(17):4634–4637

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Leif Bergsagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergsagel, P.L., Kuehl, W.M. (2015). Immunoglobulin and MYC Rearrangements in Multiple Myeloma Pathogenesis. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_8

Download citation

Publish with us

Policies and ethics

Navigation