Sarcomas and Related Mesenchymal Tumors

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Understanding the molecular pathology of sarcomas and related mesenchymal lesions is often essential for their diagnosis. Cytogenetics and molecular cytogenetics have contributed significantly to the identification of recurrent chromosomal changes, fostering a continual refinement in the classification of these tumors. The recognition of distinctive rearrangements in tumor subsets is providing powerful tools to a field in which pathological diagnosis and clinical management are often difficult, due to both the variety of tumor phenotypes and their relative rarity. Novel technical approaches, including next-generation sequencing, are increasing the speed and throughput of molecular analysis and the application of genomic knowledge into clinical practice may radically change the management of patients with sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    Article  CAS  PubMed  Google Scholar 

  2. Kleihues P, Schauble B, Schauble B, zur Hausen A, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150:1–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Antonescu CR, Dal Cin P. Promiscuous genes involved in recurrent chromosomal translocations in soft tissue tumours. Pathology. 2014;46:105–12.

    Article  PubMed  Google Scholar 

  4. Bennicelli JL, Barr FG. Chromosomal translocations and sarcomas. Curr Opin Oncol. 2002;14:412–9.

    Article  CAS  PubMed  Google Scholar 

  5. Fletcher CD. The evolving classification of soft tissue tumours – an update based on the new 2013 WHO classification. Histopathology. 2014;64:2–11.

    Article  PubMed  Google Scholar 

  6. Ladanyi M, Bridge JA. Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol. 2000;31:532–8.

    Article  CAS  PubMed  Google Scholar 

  7. Mertens F, Tayebwa J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology. 2014;64:151–62.

    Article  PubMed  Google Scholar 

  8. Coffin CM, Patel A, Perkins S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14:569–76.

    Article  CAS  PubMed  Google Scholar 

  9. Greco A, Roccato E, Miranda C, et al. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer. 2001;92:354–60.

    Article  CAS  PubMed  Google Scholar 

  10. Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15:95–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ladanyi M, Lui MY, Antonescu CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.

    Article  CAS  PubMed  Google Scholar 

  12. Koontz JI, Soreng AL, Nucci M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98:6348–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med. 2003;138:560–70.

    Article  CAS  PubMed  Google Scholar 

  14. Fletcher CD, Fletcher JA, Dal Cin P, et al. Diagnostic gold standard for soft tissue tumours: morphology or molecular genetics? Histopathology. 2001;39:100–3.

    Article  CAS  PubMed  Google Scholar 

  15. Rosai J, Akerman M, Dal Cin P, et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP Study Group). Am J Surg Pathol. 1996;20:1182–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ladanyi M. Diagnosis and classification of small round-cell tumors of childhood. Am J Pathol. 1999;155:2181–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Antonescu CR, Dal Cin P, Nafa K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    Article  CAS  PubMed  Google Scholar 

  18. Rossow KL, Janknecht R. The Ewing’s sarcoma gene product functions as a transcriptional activator. Cancer Res. 2001;61:2690–5.

    CAS  PubMed  Google Scholar 

  19. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia MA, et al. Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical role in the pathogenesis of liposarcoma. Oncogene. 2000;19:6015–22.

    Article  CAS  PubMed  Google Scholar 

  20. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20:5736–46.

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher CD, Akerman M, Dal Cin P, et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148:623–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Wunder JS, Eppert K, Burrow SR, et al. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 1999;18:783–8.

    Article  CAS  PubMed  Google Scholar 

  23. Gisselsson D, Palsson E, Hoglund M, et al. Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer. 2002;33:133–40.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida A, Ushiku T, Motoi T, et al. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol. 2010;23:1279–88.

    Article  CAS  PubMed  Google Scholar 

  25. Dei Tos AP, Doglioni C, Piccinin S, et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000;190:531–6.

    Article  CAS  PubMed  Google Scholar 

  26. Meza-Zepeda LA, Berner JM, Henriksen J, et al. Ectopic sequences from truncated HMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes Cancer. 2001;31:264–73.

    Article  CAS  PubMed  Google Scholar 

  27. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78.

    CAS  PubMed  Google Scholar 

  28. Sommer G, Agosti V, Ehlers I, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci U S A. 2003;100:6706–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chen LL, Holden JA, Choi H, et al. Evolution from heterozygous to homozygous KIT mutation in gastrointestinal stromal tumor correlates with the mechanism of mitotic nondisjunction and significant tumor progression. Mod Pathol. 2008;21:826–36.

    Article  CAS  PubMed  Google Scholar 

  30. Demetri GD, Antonia S, Benjamin RS, et al. Soft tissue sarcoma. J Natl Compr Canc Netw. 2010;8:630–74.

    PubMed  Google Scholar 

  31. Gastrointestinal-Stromal-Tumor-Meta-Analysis-Group. Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol. 2010;28:1247–53.

    Article  Google Scholar 

  32. Rubin BP, Blanke CD, Demetri GD, et al. Protocol for the examination of specimens from patients with gastrointestinal stromal tumor. Arch Pathol Lab Med. 2010;134:165–70.

    PubMed  Google Scholar 

  33. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9.

    Article  CAS  PubMed  Google Scholar 

  34. Martin J, Poveda A, Llombart-Bosch A, et al. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol. 2005;23:6190–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lazar AJ, Tuvin D, Hajibashi S, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Idowu BD, Al-Adnani M, O'Donnell P, et al. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology. 2007;50:691–704.

    Article  CAS  PubMed  Google Scholar 

  37. Delaney D, Diss TC, Presneau N, et al. GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol. 2009;22:718–24.

    Article  CAS  PubMed  Google Scholar 

  38. Jackson EM, Sievert AJ, Gai X, et al. Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res. 2009;15:1923–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Barr FG, Chatten J, D'Cruz CM, et al. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 1995;273:553–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bridge JA, Sandberg AA. Cytogenetic and molecular genetic techniques as adjunctive approaches in the diagnosis of bone and soft tissue tumors. Skeletal Radiol. 2000;29:249–58.

    Article  CAS  PubMed  Google Scholar 

  41. Adem C, Gisselsson D, Dal Cin P, et al. ETV6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 2001;14:1246–51.

    Article  CAS  PubMed  Google Scholar 

  42. Hui P, Howe JG, Crouch J, et al. Real-time quantitative RT-PCR of cyclin D1 mRNA in mantle cell lymphoma: comparison with FISH and immunohistochemistry. Leuk Lymphoma. 2003;44:1385–94.

    Article  CAS  PubMed  Google Scholar 

  43. Athale UH, Shurtleff SA, Jenkins JJ, et al. Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol. 2001;23:99–104.

    Article  CAS  PubMed  Google Scholar 

  44. Dagher R, Pham TA, Sorbara L, et al. Molecular confirmation of Ewing sarcoma. J Pediatr Hematol Oncol. 2001;23:221–4.

    Article  CAS  PubMed  Google Scholar 

  45. Guillou L, Coindre J, Gallagher G, et al. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32:105–12.

    Article  CAS  PubMed  Google Scholar 

  46. Sorensen PH, Lessnick SL, Lopez-Terrada D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.

    Article  CAS  PubMed  Google Scholar 

  47. Barr FG, Womer RB. Molecular diagnosis of ewing family tumors: too many fusions... ?. J Mol Diagn. 2007;9:437–40.

    Google Scholar 

  48. Cummings TJ, Brown NM, Stenzel TT. TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Ann Clin Lab Sci. 2002;32:219–24.

    CAS  PubMed  Google Scholar 

  49. Hill DA, Riedley SE, Patel AR, et al. Real-time polymerase chain reaction as an aid for the detection of SYT-SSX1 and SYT-SSX2 transcripts in fresh and archival pediatric synovial sarcoma specimens: report of 25 cases from St. Jude Children’s Research Hospital. Pediatr Dev Pathol. 2003;6:24–34.

    Article  CAS  PubMed  Google Scholar 

  50. Peter M, Gilbert E, Delattre O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest. 2001;81:905–12.

    Article  CAS  PubMed  Google Scholar 

  51. Hostein I, Menard A, Bui BN, et al. Molecular detection of the synovial sarcoma translocation t(X;18) by real-time polymerase chain reaction in paraffin-embedded material. Diagn Mol Pathol. 2002;11:16–21.

    Article  PubMed  Google Scholar 

  52. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.

    Article  CAS  PubMed  Google Scholar 

  53. Gibbons JG, Janson EM, Hittinger CT, et al. Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol. 2009;26:2731–44.

    Article  CAS  PubMed  Google Scholar 

  54. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12:671–82.

    Article  CAS  PubMed  Google Scholar 

  55. Levin JZ, Berger MF, Adiconis X, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol. 2009;10:R115.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Chibon F, Lagarde P, Salas S, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16:781–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kumar S, Perlman E, Pack S, et al. Absence of EWS/FLI1 fusion in olfactory neuroblastomas indicates these tumors do not belong to the Ewing’s sarcoma family. Hum Pathol. 1999;30:1356–60.

    Article  CAS  PubMed  Google Scholar 

  58. Parham DM, Shapiro DN, Downing JR, et al. Solid alveolar rhabdomyosarcomas with the t(2;13). Report of two cases with diagnostic implications. Am J Surg Pathol. 1994;18:474–8.

    Article  CAS  PubMed  Google Scholar 

  59. Knight JC, Renwick PJ, Dal Cin P, et al. Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 1995;55:24–7.

    CAS  PubMed  Google Scholar 

  60. Sandberg AA, Anderson WD, Fredenberg C, et al. Dermatofibrosarcoma protuberans of the breast. Cancer Genet Cytogenet. 2003;142:56–9.

    Article  PubMed  Google Scholar 

  61. Reid R, de Silva MV, Paterson L, et al. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27:1229–36.

    Article  PubMed  Google Scholar 

  62. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85:408–15.

    Article  CAS  PubMed  Google Scholar 

  63. Wang WL, Evans HL, Meis JM, et al. FUS rearrangements are rare in ‘pure’ sclerosing epithelioid fibrosarcoma. Mod Pathol. 2012;25(6):846–53.

    Article  PubMed  Google Scholar 

  64. Sjoblom T, Shimizu A, O'Brien KP, et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res. 2001;61:5778–83.

    CAS  PubMed  Google Scholar 

  65. Rutkowski P, Van Glabbeke M, Rankin CJ, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol. 2010;28:1772–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Anderson J, Gordon T, McManus A, et al. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer. 2001;85:831–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Guillou L, Benhattar J, Bonichon F, et al. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol. 2004;22:4040–50.

    Article  PubMed  Google Scholar 

  68. Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998;338:153–60.

    Article  CAS  PubMed  Google Scholar 

  69. Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62:135–40.

    CAS  PubMed  Google Scholar 

  70. van Doorninck JA, Ji L, Schaub B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2010;28:1989–94.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Fidelia-Lambert MN, Zhuang Z, Tsokos M. Sensitive detection of rare Ewing’s sarcoma cells in peripheral blood by reverse transcriptase polymerase chain reaction. Hum Pathol. 1999;30:78–80.

    Article  CAS  PubMed  Google Scholar 

  72. Sumerauer D, Vicha A, Kucerova H, et al. Detection of minimal bone marrow infiltration in patients with localized and metastatic Ewing sarcoma using RT-PCR. Folia Biol (Praha). 2001;47:206–10.

    CAS  Google Scholar 

  73. Schleiermacher G, Delattre O. Detection of micrometastases and circulating tumour cells using molecular biology technics in solid tumours. Bull Cancer. 2001;88:561–70.

    CAS  PubMed  Google Scholar 

  74. Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42:715–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Worley BS, van den Broeke LT, Goletz TJ, et al. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res. 2001;61:6868–75.

    CAS  PubMed  Google Scholar 

  76. Tanaka K, Iwakuma T, Harimaya K, et al. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997;99:239–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Uchida A, Seto M, Hashimoto N, et al. Molecular diagnosis and gene therapy in musculoskeletal tumors. J Orthop Sci. 2000;5:418–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Tallini M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tallini, G., de Biase, D., Hui, P. (2016). Sarcomas and Related Mesenchymal Tumors. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation