Determination of Volatile Organic Compounds: Enrichment and Analysis

  • Chapter
Handbook of Trace Analysis

Abstract

Modern analytical methods enable comprehensive and precise analysis of the whole range of compounds present in various matrices. For the sake of natural systems and their proper functioning, the determination of contaminants that irreversibly destroy living organisms is of utmost importance. Reducing emissions, or even halting production processes that result in release of harmful substances, is necessary. Because industry tends to be constantly expanding, both direct and indirect hazards cannot be avoided. Direct hazards involve the contamination of matrices such as water, soil, and atmosphere, whereas indirect hazards relate to food, plants, animals, and humans. To prevent the degradation of natural environments, regular control measurements are required to monitor changes occurring in ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giger, W.: Hydrophilic and amphiphilic water pollutants; using advanced analytical methods for classic and emerging contaminants. Anal. Biochem. Chem. 393, 37–44 (2009)

    CAS  Google Scholar 

  2. Baird, C., Cann, M.: Environmental chemistry, 3rd edn, p. 72. W.H. Freeman, New York (2005)

    Google Scholar 

  3. Bajtarevic, A., Ager, C., Pienz, M., Kleiber, M., Schwarz, K., Ligor, M., Ligor, T., Filipiak, W., Denz, H., Fiegl, M., Hilbe, W., Weiss, W., Lukas, P., Jamning, H., Hackl, M., Haidenberger, A., Buszewski, B., Miekisch, W., Schubert, J., Amann, A.: Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9, 348–364 (2009)

    Google Scholar 

  4. Kinter, M.: Analytical technologies for lipid oxidation products analysis. J. Chromatogr. B 671, 223–236 (1995)

    CAS  Google Scholar 

  5. Karlberg, B., Thelander, S.: Extraction based on the flow-injection principle: Part I. Description of the extraction system. Anal. Chim. Acta 98, 1–7 (1978)

    CAS  Google Scholar 

  6. Murray, D.A.J.: Rapid micro extraction procedure for analyses of trace amounts of organic compounds in water by gas chromatography and comparisons with macro extraction method. J. Chromatogr. A 177, 135–140 (1979)

    CAS  Google Scholar 

  7. Jeannot, M.A., Cantwell, F.F.: Solvent microextraction into a single drop. Anal. Chem. 68, 2236–2240 (1996)

    CAS  Google Scholar 

  8. He, Y., Lee, H.K.: Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal. Chem. 69, 4634–4640 (1997)

    CAS  Google Scholar 

  9. Ligor, T., Buszewski, B.: Extraction of trace organic pollutants from aqueous samples by a single drop method. Chromatographia 51, S279–S282 (2000)

    CAS  Google Scholar 

  10. Buszewski, B., Ligor, T.: Single-drop extraction versus solid-phase microextraction for the analysis of VOCs in water. LC-GC Europe 2, 2–6 (2002)

    Google Scholar 

  11. Ponnusamy, V.K., Ramkumar, A., Jen, J.F.: Microwave assisted headspace controlled-temperature single drop microextraction for liquid chromatographic determination of chlorophenols in aqueous samples. Microchim. Acta 179, 141–148 (2012)

    CAS  Google Scholar 

  12. Tian, F., Liu, W., Fang, H., An, M., Duan, S.: Determination of six organophosphorus pesticides in water by single-drop microextraction coupled with GC–NPD. Chromatographia 77, 487–492 (2014)

    CAS  Google Scholar 

  13. Fernandes, V.C., Subramanian, V., Mateus, N., Domingues, V.F., Delerue-Matos, C.: The development and optimization of a modified single-drop microextraction method for organochlorine pesticides determination by gas chromatography-tandem mass spectrometry. Microchim. Acta 178, 195–202 (2012)

    CAS  Google Scholar 

  14. Park, Y.K., Chung, W.Y., Kim, B., Kye, Y., Shin, M., Kim, D.: Ion-pair single-drop microextraction determinations of degradation products of chemical warfare agents in water. Chromatographia 76, 679–685 (2013)

    CAS  Google Scholar 

  15. Hu, M., Chen, H., Jiang, Y., Zhu, H.: Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine. Chem. Pap. 67(10), 1255–1261 (2013)

    CAS  Google Scholar 

  16. Enteshari, M., Mohammadi, A., Nayebzadeh, K., Azadniya, E.: Optimization of headspace single-drop microextraction coupled with gas chromatography–mass spectrometry for determining volatile oxidation compounds in mayonnaise by response surface methodology. Food Anal. Methods 7, 438–448 (2014)

    Google Scholar 

  17. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., Berijani, S.: Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 1116, 1–9 (2006)

    CAS  Google Scholar 

  18. Negreira, N., Rodríguez, I., Rubí, E., Cela, R.: Dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the rapid and sensitive determination of UV filters in environmental water samples. Anal. Bioanal. Chem. 398, 995–1004 (2010)

    CAS  Google Scholar 

  19. Wang, K.D., Chen, P.S., Huang, S.D.: Simultaneous derivatization and extraction of chlorophenols in water samples with up-and-down shaker-assisted dispersive liquid–liquid microextraction coupled with gas chromatography/mass spectrometric detection. Anal. Bioanal. Chem. 406, 2123–2131 (2014)

    CAS  Google Scholar 

  20. Bosch Ojeda, C., Rojas, F.S.: Separation and preconcentration by dispersive liquid–liquid microextraction procedure. Chromatographia 69, 1149–1159 (2009)

    CAS  Google Scholar 

  21. Liang, P., Xu, J., Li, Q.: Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Anal. Chim. Acta 609, 53–58 (2008)

    CAS  Google Scholar 

  22. Saraji, M., Boroujeni, M.K.: Recent developments in dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 406, 2027–2066 (2014)

    CAS  Google Scholar 

  23. Vinas, P., Campillo, N., López-García, I., Hernández-Córdoba, M.: Dispersive liquid–liquid microextraction in food analysis. A critical review. Anal. Bioanal. Chem. 406, 2067–2099 (2014)

    CAS  Google Scholar 

  24. Ojeda, C.B., Rojas, F.S.: Separation and preconcentration by dispersive liquid–liquid microextraction procedure: recent applications. Chromatographia 74, 651–679 (2011)

    CAS  Google Scholar 

  25. Escudero, L.B., Grijalba, A.C., Martinis, E.M., Wuilloud, R.G.: Bioanalytical separation and preconcentration using ionic liquids. Anal Bioanal Chem 405, 7597–7613 (2013)

    CAS  Google Scholar 

  26. Zhao, Q., Anderson, J.L.: Task-specific microextractions using ionic liquids. Anal. Bioanal. Chem. 400, 1613–1618 (2011)

    CAS  Google Scholar 

  27. Zhou, Q., Ye, C.: Ionic liquid for improved single-drop microextraction of aromatic amines in water samples. Microchim. Acta 162, 153–159 (2008)

    CAS  Google Scholar 

  28. He, L., Luo, X., **e, H., Wang, C., Jiang, X., Lu, K.: Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal. Chim. Acta 655, 52–59 (2009)

    CAS  Google Scholar 

  29. Guo, L., Lee, H.K.: Low-density solvent-based solvent demulsification dispersive liquid–liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. J. Chromatogr. A 1218, 5040–5046 (2011)

    CAS  Google Scholar 

  30. Wang, H., Yu, S., Campiglia, A.D.: Solid-phase nano-extraction and laser-excited time-resolved Shpolskii spectroscopy for the analysis of polycyclic aromatic hydrocarbons in drinking water samples. Anal. Biochem. 385, 249–256 (2009)

    CAS  Google Scholar 

  31. Kolb, B., Ettre, L.S.: Static headspace-gas chromatography: theory and practice, 2nd edn. Wiley, Hoboken, NJ (2006). ISBN 978-0-471-74944-8

    Google Scholar 

  32. Russo, M.V., Goretti, G., Liberti, A.: Direct headspace gas chromatographic determination of dichloromethane in decaffeinated green and roasted coffee. J. Chromatogr. 465, 429–433 (1989)

    CAS  Google Scholar 

  33. Liu, M., Li, H., Zhan, H.: A novel method for the determination of the ethanol content in soy sauce by full evaporation headspace gas chromatography. Food Anal. Methods 7, 1043–1046 (2014)

    Google Scholar 

  34. Ljungkvist, G., Larstad, M., Mathiasson, L.: Specific determination of benzene in urine using dynamic headspace and mass-selective detection. J. Chromatogr. B 721, 39–46 (1999)

    CAS  Google Scholar 

  35. Schroers, H.J., Jermann, E.: Determination of physiological levels of volatile organic compounds in blood using static headspace capillary gas chromatography with serial triple detection. Analyst 123, 715–720 (1998)

    CAS  Google Scholar 

  36. Montesinos, I., Gallego, M.: Headspace gas chromatography–mass spectrometry for rapid determination of halonitromethanes in tap and swimming pool water. Anal. Bioanal. Chem. 402, 2315–2323 (2012)

    CAS  Google Scholar 

  37. Penton, Z.: Determination of residual solvent in pharmaceutical preparations by static headspace GC. J. High Resol. Chromatogr. 15, 329–331 (1992)

    CAS  Google Scholar 

  38. Technical guide. A technical guide for static headspace analysis using GC, Restek, Bellefonte, PA, USA, Application note (2000)

    Google Scholar 

  39. Grob, R.L., Barry, E.F. (eds.): Modern practice of gas chromatography, 4th edn, pp. 790–794. Wiley, Hoboken, NJ (2004)

    Google Scholar 

  40. Jiemin, L., Ning, L., Meijuan, W., Guibin, J.: Determination of volatile sulfur compounds in beverage and coffee samples by purge-and-trap on-line coupling with a gas chromatography-flame photometric detector. Microchim. Acta 148, 43–47 (2004)

    Google Scholar 

  41. Beltran, J., Serrano, E., López, F.J., Peruga, A., Valcarcel, M., Rosello, S.: Comparison of two quantitative GC–MS methods for analysis of tomato aroma based on purge-and-trap and on solid-phase microextraction. Anal. Bioanal. Chem. 385, 1255–1264 (2006)

    CAS  Google Scholar 

  42. Zang, L.H., Liu, Y.L., Liu, J.Q., Tian, Q., **ang, F.N.: An improved method for testing weak VOCs in dry plants with a purge and trap concentrator coupled to GC-MS. Chromatographia 68, 351–356 (2008)

    CAS  Google Scholar 

  43. Zhao, R.S., Cheng, C.G., Yuan, J.P., Jiang, T., Wang, X., Lin, J.M.: Sensitive measurement of ultratrace phenols in natural water by purge-and-trap with in situ acetylation coupled with gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 387, 687–694 (2007)

    CAS  Google Scholar 

  44. Barco-Bonilla, N., Plaza-Bolanos, P., Fernández-Moreno, J.L., Romero-González, R., Frenich, A.G., Vidal, J.L.M.: Determination of 19 volatile organic compounds in wastewater effluents from different treatments by purge and trap followed by gas-chromatography coupled to mass spectrometry. Anal. Bioanal. Chem. 400, 3537–3546 (2011)

    CAS  Google Scholar 

  45. Han, D., Ma, W., Chen, D.: Determination of biodegradation process of benzene, toluene, ethylbenzene and xylenes in seabed sediment by purge and trap gas chromatography. Chromatographia 66, 899–904 (2007)

    CAS  Google Scholar 

  46. Larreta, J., Bilbao, U., Vallejo, A., Usobiaga, A., Arana, G., Zuloaga, O.: Multisimplex optimization of the purge-and-trap preconcentration of volatile fatty acids, phenols and indoles in cow slurries. Chromatographia 67, 93–99 (2008)

    CAS  Google Scholar 

  47. Barcelo, D.: Environmental analysis. Elsevier, Amsterdam (1993)

    Google Scholar 

  48. Buszka, P.M., Zaugg, S.D., Werner, M.G.: Determination of trace concentrations of volatile organic compounds in ground water using closed-loop strip**. Bull. Environ. Contamin. Toxicol. 45, 507–515 (1990)

    CAS  Google Scholar 

  49. Meruva, N.K., Penn, J.M., Farthing, D.E.: Rapid identification of microbial VOCs from tobacco molds using closed-loop strip** and gas chromatography/time-of-flight mass spectrometry. J. Ind. Microbiol. Biotechnol. 31, 482–488 (2004)

    CAS  Google Scholar 

  50. Harper, M.: Sorbent trap** of volatile organic compounds from air. J. Chromatogr. A 885, 129–151 (2000)

    CAS  Google Scholar 

  51. Dettmer, K., Knobloch, T., Engewald, W.: Stability of reactive low boiling hydrocarbons on carbon based adsorbents typically used for adsorptive enrichment and thermal desorption. Fresenius J. Anal. Chem. 366, 70–78 (2000)

    CAS  Google Scholar 

  52. Palluau, F., Mirabel, P., Millet, M.: Influence of relative humidity and ozone on the sampling of volatile organic compounds on carbotrap/carbosieve adsorbents. Environ. Monit. Assess. 127, 177–187 (2007)

    CAS  Google Scholar 

  53. Dettmer, K., Engewald, W.: Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 373, 490–500 (2002)

    CAS  Google Scholar 

  54. Dettmer, K., Bittner, T., Engewald, W.: Adsorptive enrichment and thermal desorption of low-boiling oxygenated compounds possibilities and limitations. Chromatographia Suppl. 53, S322–S326 (2001)

    CAS  Google Scholar 

  55. Massold, E., Bahr, C., Salthammer, T., Brown, S.K.: Determination of VOC and TVOC in air using thermal desorption GC-MS – practical implications for test chamber experiments. Chromatographia 62, 75–85 (2005)

    CAS  Google Scholar 

  56. Ras, M.R., Marcé, R.M., Borrull, F.: Volatile organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography–mass spectrometry. Environ. Monit. Assess. 161, 389–402 (2010)

    Google Scholar 

  57. Bahrami, A.R., Fam, I.M., Donaldson, J.: Development of a thermal desorption method for the analysis of particle associated polycyclic aromatic hydrocarbons in ambient air. Int. J. Environ. Sci. Technol. 1, 165–169 (2004)

    CAS  Google Scholar 

  58. Juillet, Y., Dubois, C., Bintein, F., Dissard, J., Bossée, A.: Development and validation of a sensitive thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples. Anal. Bioanal. Chem. 406, 5137–5145 (2014)

    CAS  Google Scholar 

  59. Drijfhout, F.P., Beek, T.A., Visser, J.H., Groot, A.: On-line thermal desorption–gas chromatography of intact insects for pheromone analysis. J. Chem. Ecol. 26, 1383–1392 (2000)

    CAS  Google Scholar 

  60. van Hout, M.W.J., de Zeeuw, R.A., Franke, J.R., de Jong, G.J.: Solid-phase extraction - thermal desorption-gas chromatography with mass selective detection for the determination of drugs in urine. Chromatographia 57, 221–225 (2003)

    Google Scholar 

  61. Schnelle-Kreis, J., Orasche, J., Abbaszade, G., Schäfer, K., Harlos, D.P., Hansen, A.D.A., Zimmermann, R.: Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of non-polar organics in low-volume samples from ambient particulate matter and personal samplers. Anal. Bioanal. Chem. 401, 3083–3094 (2011)

    CAS  Google Scholar 

  62. Lord, H.L., Zhan, W., Pawliszyn, J.: Fundamentals and applications of needle trap devices. A critical review. Anal. Chim. Acta 677, 3–18 (2010)

    CAS  Google Scholar 

  63. Wang, A., Fang, F., Pawliszyn, J.: Sampling and determination of volatile organic compounds with needle trap devices. J. Chromatogr. A 1072, 127–135 (2005)

    CAS  Google Scholar 

  64. Ueta, I., Mizuguchia, A., Fujimura, K., Kawakubo, S., Saito, Y.: Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples. Anal. Chim. Acta 746, 77–83 (2012)

    CAS  Google Scholar 

  65. Ueta, I., Samsudin, E.L., Mizuguchi, A., Takeuchi, H., Shink, T., Kawakubo, S., Saito, Y.: Double-bed-type extraction needle packed with activated-carbon-based sorbents for very volatile organic compound. J. Pharm. Biomed. Anal. 88, 423–428 (2014)

    CAS  Google Scholar 

  66. Trefz, P., Kischkel, S., Hein, D., James, E.S., Schubert, J.K., Miekisch, W.: Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. J. Chromatogr. A 1219, 29–38 (2012)

    CAS  Google Scholar 

  67. Ueta, I., Mizuguchi, A., Okamoto, M., Sakamaki, H., Hosoe, M., Ishigurod, M., Saito, Y.: Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography–mass spectrometry. Clin. Chim. Acta 430, 156–159 (2014)

    CAS  Google Scholar 

  68. Ueta, I., Saito, Y., Hosoe, M., Okamoto, M., Ohkita, H., Shirai, S., Tamura, H., **no, K.: Breath acetone analysis with miniaturized sample preparation device: in-needle preconcentration and subsequent determination by gas chromatography–mass Spectroscopy. J. Chromatogr. B 877, 2551–2556 (2009)

    CAS  Google Scholar 

  69. Saito, Y., Ueta, I., Ogawa, M., **no, K.: Simultaneous derivatization/preconcentration of volatile aldehydes with a miniaturized fiber-packed sample preparation device designed for gas chromatographic analysis. Anal. Bioanal. Chem. 386, 725–732 (2006)

    CAS  Google Scholar 

  70. Arthur, C.L., Pawliszyn, J.: Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62, 2145–2148 (1990)

    CAS  Google Scholar 

  71. Pawliszyn, J.: Solid phase microextraction: theory and practice. Wiley, New York (1997)

    Google Scholar 

  72. Martos, P.A., Pawliszyn, J.: Sampling and determination of formaldehyde using solid phase microextraction with on-fiber derivatization. Anal. Chem. 70, 2311–2320 (1998)

    CAS  Google Scholar 

  73. Djozan, D.J., Bahar, S.: Solid-phase microextraction of aliphatic alcohols based on polyaniline coated fibers. Chromatographia 59, 95–99 (2004)

    CAS  Google Scholar 

  74. Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., Malik, A.: Sol–gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Anal. Chem. 69, 3889–3898 (1997)

    CAS  Google Scholar 

  75. Mahdi Moein, M., Said, R., Bassyouni, F., Abdel-Rehim, M.: Solid phase microextraction and related techniques for drugs in biological samples. J. Anal. Methods Chem. 1(1–24) (2014)

    Google Scholar 

  76. Ulrich, S.: Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 902, 167–194 (2000)

    CAS  Google Scholar 

  77. Mills, G.A., Walker, V.: Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials. J. Chromatogr. A 902, 267–287 (2000)

    CAS  Google Scholar 

  78. Theodoridis, G., Koster, E.H.M., de Jong, G.J.: Solid-phase microextraction for the analysis of biological samples. J. Chromatogr. B 745, 49–82 (2000)

    CAS  Google Scholar 

  79. Augusto, F., Valentey, A.L.P.: Applications of solid-phase microextraction to chemical analysis of live biological samples. Trends Anal. Chem. 21(428–438) (2002)

    Google Scholar 

  80. Ligor, T., Ligor, M., Amann, A., Bachler, M., Ager, C., Bachler, M., Dzien, A., Buszewski, B.: The analysis of healthy volunteers’ exhaled breath by use of solid phase microextraction and GC-MS. J. Breath Res. 2, 046006 (2008)

    CAS  Google Scholar 

  81. Buszewski, B., Ulanowska, A., Ligor, T., Denderz, N., Amann, A.: Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed. Chromatogr. 23, 551–556 (2008)

    Google Scholar 

  82. Ouyang, G., Pawliszyn, J.: A critical review in calibration methods for solid-phase microextraction. Anal. Chim. Acta 627(184–197) (2008)

    Google Scholar 

  83. Lord, H., Pawliszyn, J.: Evolution of solid-phase microextraction technology. J. Chromatogr. A 885, 153–193 (2000)

    CAS  Google Scholar 

  84. O’Reilly, J., Wang, Q., Setkova, L., Hutchinson, J.P., Chen, Y., Lord, H.L., Linton, C.M., Pawliszyn, J.: Automation of solid-phase microextraction. J. Sep. Sci. 28, 2010–2022 (2005)

    Google Scholar 

  85. Dietz, C., Sanz, J., Camara, C.: Recent developments in solid-phase microextraction coatings and related techniques. J. Chromatogr. A 1103(183–192) (2006)

    Google Scholar 

  86. Kumar, A., Ashok, G., Malik, K., Kumar Tewary, D., Singh, B.: A review on development of solid phase microextraction fibers by sol–gel methods and their applications. Anal. Chim. Acta 610, 1–14 (2008)

    CAS  Google Scholar 

  87. Lipinski, J.: Automated solid phase dynamic extraction – Extraction of organics using a wall coated syringe needle. Fresenius J. Anal. Chem. 369, 57–62 (2001)

    CAS  Google Scholar 

  88. Van Durme, J., Demeestere, K., Dewulf, J., Ronsse, F., Braeckman, L., Pieters, J., Van Langenhove, H.: Accelerated solid-phase dynamic extraction of toluene from air. J. Chromatogr. A 1175, 145–153 (2007)

    Google Scholar 

  89. Laaks, J., Jochmann, M.A., Schmidt, T.C.: Solvent-free microextraction techniques in gas chromatography. Anal. Bioanal. Chem. 402, 565–571 (2012)

    CAS  Google Scholar 

  90. Laaks, J., Letzel, T., Schmidt, T.C., Jochmann, M.A.: Fingerprinting of red wine by headspace solid-phase dynamic extraction of volatile constituents. Anal. Bioanal. Chem. 403, 2429–2436 (2012)

    CAS  Google Scholar 

  91. Nerín, C., Salafranca, J., Aznar, M., Batlle, R.: Critical review on recent developments in solventless techniques for extraction of analytes. Anal. Bioanal. Chem. 393, 809–833 (2009)

    Google Scholar 

  92. Baltussen, E., Sandra, P., David, F., Cramers, C.: Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J. Microcol. Sep. 11, 737–747 (1999)

    CAS  Google Scholar 

  93. David, F., Tienpont, B., Sandra, P.: Stir-bar sorptive extraction of trace organic compounds from aqueous matrices. LC GC North America 21, 108–118 (2003)

    CAS  Google Scholar 

  94. Baltussen, E., Cramers, C.A., Sandra, P.: Sorptive sample preparation - a review. Anal. Bioanal. Chem. 373, 3–22 (2002)

    CAS  Google Scholar 

  95. Tienpont, B., David, F., Bicchi, C., Sandra, P.: High capacity headspace sorptive extraction. J. Microcol. Sep. 12, 577–584 (2000)

    CAS  Google Scholar 

  96. Popp, P., Bauer, C., Weinrich, L.: Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Anal. Chim. Acta 436, 1–9 (2001)

    CAS  Google Scholar 

  97. Rita, A., Silva, M., Nogueira, J.M.F.: Stir-bar-sorptive extraction and liquid desorption combined with large-volume injection gas chromatography–mass spectrometry for ultra-trace analysis of musk compounds in environmental water matrices. Anal. Bioanal. Chem. 396, 1853–1862 (2010)

    Google Scholar 

  98. Ruan, E.D., Aalhus, J.L., Juárez, M., Sabik, H.: Analysis of volatile and flavor compounds in grilled lean beef by stir bar sorptive extraction and thermal desorption gas chromatography mass spectrometry. Food Anal. Methods 8, 363–370 (2015)

    Google Scholar 

  99. Niu, Y., Yu, D., **ao, Z., Zhu, J., Song, S., Zhu, G.: Use of stir bar sorptive extraction and thermal desorption for gas chromatography-mass spectrometry characterization of selected volatile compounds in Chinese liquors. Food Anal. Methods (2015). doi:10.1007/s12161-014-0060

    Google Scholar 

  100. Bonet-Domingo, E., Grau-González, S., Martín-Biosca, Y., Medina-Hernández, M.J., Sagrado, S.: Harmonized internal quality aspects of a multi-residue method for determination of forty-six semivolatile compounds in water by stir-bar-sorptive extraction–thermal desorption gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 387, 2537–2545 (2007)

    CAS  Google Scholar 

  101. Iparraguirre, A., Prieto, A., Navarro, P., Olivares, M., Fernández, L.Á., Zuloaga, O.: Optimisation of stir bar sorptive extraction and in-tube derivatisation–thermal desorption–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds in environmental water samples. Anal. Bioanal. Chem. 401, 339–352 (2011)

    CAS  Google Scholar 

  102. Kawaguchi, M., Ito, R., Sakui, N., Okanouchi, N., Saito, K., Seto, Y., Nakazawa, H.: Stir-bar-sorptive extraction, with in-situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides. Anal. Bioanal. Chem. 388, 391–398 (2007)

    CAS  Google Scholar 

  103. Ferreira, A.M.C., Möder, M., Laespada, M.E.F.: GC-MS determination of parabens, triclosan and methyl triclosan in water by in situ derivatisation and stir-bar sorptive extraction. Anal. Bioanal. Chem. 399, 945–953 (2011)

    Google Scholar 

  104. Badoil, L., Benanou, D.: Characterization of volatile and semivolatile compounds in waste landfill leachates using stir bar sorptive extraction–GC/MS. Anal. Bioanal. Chem. 393, 1043–1054 (2009)

    CAS  Google Scholar 

  105. Van Hoeck, E., Canale, F., Cordero, C., Compernolle, S., Bicchi, C., Sandra, P.: Multiresidue screening of endocrine-disrupting chemicals and pharmaceuticals in aqueous samples by multi-stir bar sorptive extraction–single desorption–capillary gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 393, 907–919 (2009)

    Google Scholar 

  106. Hyötyläinen, T.: Critical evaluation of sample pretreatment techniques. Anal. Bioanal. Chem. 394, 743–758 (2009)

    Google Scholar 

  107. Farajzadeh, M.A., Sorouraddin, S.M., Mogaddam, M.R.A.: Liquid phase microextraction of pesticides: a review on current methods. Microchim. Acta 181, 829–851 (2014)

    CAS  Google Scholar 

  108. Vincelet, C., Rousse, J.M., Benanou, D.: Experimental designs dedicated to the evaluation of a membrane extraction method: membrane-assisted solvent extraction for compounds having different polarities by means of gas chromatography–mass detection. Anal. Bioanal. Chem. 396, 2285–2292 (2010)

    CAS  Google Scholar 

  109. Kuosmanen, K., Hyötyläinen, T., Hartonen, K., Jönsson, J.A., Riekkola, M.L.: Analysis of PAH compounds in soil with on-line coupled pressurised hot water extraction–microporous membrane liquid–liquid extraction–gas chromatography. Anal. Bioanal. Chem. 375, 389–399 (2003)

    CAS  Google Scholar 

  110. Lüthje, K., Hyötyläinen, T., Riekkola, M.L.: On-line coupling of microporous membrane liquid–liquid extraction and gas chromatography in the analysis of organic pollutants in water. Anal. Bioanal. Chem. 378, 1991–1998 (2004)

    Google Scholar 

  111. Iparraguirre, A., Navarro, P., Prieto, A., Rodil, R., Olivares, M., Fernández, L.A., Zuloaga, O.: Membrane-assisted solvent extraction coupled to large volume injection–gas chromatography–mass spectrometry for the determination of a variety of endocrine disrupting compounds in environmental water samples. Anal. Bioanal. Chem. 402, 2897–2907 (2012)

    CAS  Google Scholar 

  112. Pratt, K.F., Pawliszyn, J.: Gas extraction kinetics of volatile organic with a hollow fiber membrane. Anal. Chem. 64, 2101–2106 (1992)

    CAS  Google Scholar 

  113. Matz, G., Kibelka, G., Dahl, J., Lenneman, F.: Experimental study on solvent-less sample preparation methods - membrane extraction with a sorbent interface, thermal membrane desorption application and purge-and-trap. J. Chromatogr. 830, 365–376 (1999)

    CAS  Google Scholar 

  114. Juan, S., Guo, X., Mitra, S.: On-site and on-line analysis of chlorinated solvents in ground water using pulse introduction membrane extraction gas chromatography (PIME-GC). J. Sep. Sci. 24, 599–605 (2001)

    Google Scholar 

  115. Kotiaho, T.: On-site environmental and in situ process analysis by mass spectrometry. J. Mass Spectrom. 31, 1–15 (1996)

    CAS  Google Scholar 

  116. Viktorova, O.S., Kogan, V.T., Manninen, S.A., Kotiaho, T., Ketola, R.A., Dubenskii, B.M., Parinov, S.P., Smirnov, O.V.: Utilization of a multimembrane inlet and a cyclic sudden sampling introduction mode in membrane inlet mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 823–831 (2004)

    CAS  Google Scholar 

  117. Li, X., **a, L., Yan, X.: Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil. Biol. Fertil. Soils 50, 891–900 (2014)

    CAS  Google Scholar 

  118. Beckmann, K., Messinger, J., Badger, M.R., Wydrzynski, T., Hillier, W.: On-line mass spectrometry: membrane inlet sampling. Photosynth. Res. 102, 511–522 (2009)

    CAS  Google Scholar 

  119. Masucci, J.A., Caldwell, G.W.: Techniques for gas chromatography/mass spectrometry. In: Grob, R.L., Barry, E.F. (eds.) Modern practice of gas chromatography, pp. 339–401. Wiley, Hoboken, NJ (2004)

    Google Scholar 

  120. Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., Lindinger, W.: Proton transfer reaction mass spectrometry – online trace gas analysis at the ppb level. Int. J. Mass Spectrom. Ion Proc. 150, 609–619 (1995)

    Google Scholar 

  121. Cao, W., Duan, Y.: Current status of methods and techniques for breath analysis. Crit. Rev. Anal. Chem. 37, 3–13 (2007)

    CAS  Google Scholar 

  122. Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS), medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion. Proc. 173, 191–241 (1998)

    CAS  Google Scholar 

  123. Zhan, X., Duan, J., Duan, Y.: Recent developments of proton-transfer reaction mass spectrometry (PTR-MS) and its applications in medical research. Mass Spectrom. Rev. 32, 143–165 (2013)

    CAS  Google Scholar 

  124. Blake, R.S., Whyte, C., Monks, P.S., Ellis, A.M.: Proton transfer reaction time-of-flight mass spectrometry: a good prospect for diagnostic breath analysis. In: Amann, A., Smith, D. (eds.) Breath analysis for clinical diagnosis and therapeutic monitoring, p. 45. World Scientific, Toh Tuck Link, Singapore (2005)

    Google Scholar 

  125. Moser, B., Bodrogi, F., Eibl, G., Lechner, M., Rieder, J., Lirk, P.: Mass spectrometric profile of exhaled breath—field study by PTR-MS. Resp. Physiol. Neurobiol. 145, 295–300 (2005)

    CAS  Google Scholar 

  126. Španěl, P., Diskin, A.M., Abbott, S.M., Wang, T., Smith, D.: Quantification of volatile compounds in the headspace of aqueous liquids using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 16, 2148–2153 (2002)

    Google Scholar 

  127. Smith, D., Španěl, P.: Selected ion flow tube mass spectrometry, SIFT-MS, for on-line trace gas analysis. In: Amann, A., Smith, D. (eds.) Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, pp. 3–34. World Scientific Publishing, Toh Tuck Link, Singapore (2005)

    Google Scholar 

  128. Španěl, P., Smith, D.: On-line measurements of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 15, 563–596 (2001)

    Google Scholar 

  129. Španěl, P., Smith, D.: Selected ion flow tube mass spectrometry: detection ad real-time monitoring of flavours released by food products. Rapid Commun. Mass Spectrom. 13, 585–597 (1999)

    Google Scholar 

  130. Smith, D., Wang, T., Sule-Suso, J., Španěl, P., Haj, A.E.: Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 17, 845–850 (2003)

    CAS  Google Scholar 

  131. Baumbach, J.I.: Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem. 384, 1059–1070 (2006)

    CAS  Google Scholar 

  132. Li, F., **e, Z., Schmidt, H., Sielemann, S., Baumbach, J.I.: Ion mobility spectrometer for online monitoring of trace compounds. Spectrochim. Acta Part B 57, 1563–1574 (2002)

    Google Scholar 

  133. Ewing, R.G., Atkinson, D.A., Eiceman, G.A., Ewing, G.J.: A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54, 515–529 (2001)

    CAS  Google Scholar 

  134. Rearden, P., Harrington, P.B.: Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS). Anal. Chim. Acta 545, 13–20 (2005)

    CAS  Google Scholar 

  135. Wang, Y., Nacson, S., Pawliszyn, J.: The coupling of solid-phase microextraction/surface enhanced laser desorption/ionization to ion mobility spectrometry for drug analysis. Anal. Chim. Acta 582, 50–54 (2007)

    CAS  Google Scholar 

  136. O’Donnell, R.M., Sun, X., Harrington, P.B.: Pharmaceutical applications of ion mobility spectrometry. Trends Anal. Chem. 27, 44–53 (2008)

    Google Scholar 

  137. Miekisch, W., Schubert, J.K.: From highly sophisticated analytical techniques to life-saving diagnostics: technical developments in breath analysis. Trends Anal. Chem. 25, 665–673 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buszewski, B., Ligor, T., Ulanowska, A. (2016). Determination of Volatile Organic Compounds: Enrichment and Analysis. In: Baranowska, I. (eds) Handbook of Trace Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-19614-5_14

Download citation

Publish with us

Policies and ethics

Navigation