Mechanical Properties of Epoxy/Block Copolymer Blends

  • Living reference work entry
  • First Online:
Handbook of Epoxy Blends
  • 457 Accesses

Abstract

In this chapter, we summarized the recent progress in the studies of mechanical properties of epoxy/block copolymer blends. It is recognized that nanostructures can be formed in epoxy/block copolymer blends via either self-assembly or reaction-induced microphase separation mechanism. The formation of nanostructures in the epoxy thermosets can more effectively improve the toughness of the epoxy thermosets, which has been called “toughening by nanostructures.” The toughening of nanostructured epoxy thermosets is quite dependent on type and shape of dispersed nanophases and the interactions between nanophases and epoxy matrix. In terms of the mechanism for energy dissipation, toughening mechanisms of the epoxy/block copolymer blends involve shear band, microcracking, crack pinning, and particle bridging. Depending on the inherent features of materials and operating conditions (e.g., applied loading), improvement of toughness can be achieved by the function of a single mechanism or through a complex combination of simultaneous and successive actions of different processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Barclay G, Ober C, Papathomas K, Wang D (1992) Rigid-rod thermosets based on 1, 3, 5-triazine-linked aromatic ester segments. Macromolecules 25:2947–2954

    Article  CAS  Google Scholar 

  • Barry DB, Delatycki O (1989) The strain rate dependency of fracture in polyethylene: fracture initiation. J Appl Polym Sci 38:339–350

    Article  CAS  Google Scholar 

  • Broer D, Lub J, Mol G (1993) Synthesis and photopolymerization of a liquid-crystalline diepoxide. Macromolecules 26:1244–1247

    Article  CAS  Google Scholar 

  • Bucknall CB, Gilbert AH (1989) Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 30:213–217

    Article  CAS  Google Scholar 

  • Bucknall CB, Partridge IK (1983) Phase separation in epoxy resins containing polyethersulphone. Polymer 24:639–644

    Article  CAS  Google Scholar 

  • Chen J, Chang F (1999) Phase separation process in poly (ε-caprolactone)-epoxy blends. Macromolecules 32:5348–5356

    Article  CAS  Google Scholar 

  • Cho J, Hwang J, Cho K, An J, Park C (1993) Effects of morphology on toughening of tetrafunctional epoxy resins with poly (ether imide). Polymer 34:4832–4836

    Article  CAS  Google Scholar 

  • Cong H, Li L, Zheng S (2014) Formation of nanostructures in thermosets containing block copolymers: from self-assembly to reaction-induced microphase separation mechanism. Polymer 55:1190–1201

    Article  CAS  Google Scholar 

  • Cooper SL, Estes GM (1979) Advances in chemistry series. American Chemical Society, New York

    Google Scholar 

  • de Gennes PG (1969) Scaling concepts in polymer physics. Phys Lett 28A:725–726

    Article  Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  • Dean JM, Lipic PM, Grubbs RB, Cook RF, Bates FS (2001) Micellar structure and mechanical properties of block copolymer-modified epoxies. J Polym Sci Part B: Polym Phys 39:2996–3010

    Article  CAS  Google Scholar 

  • Dean JM, Grubbs RB, Saad W, Cook RF, Bates FS (2003a) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci Part B: Polym Phys 41:2444–2456

    Article  CAS  Google Scholar 

  • Dean JM, Verghese NE, Pham HQ, Bates FS (2003b) Nanostructure toughened epoxy resins. Macromolecules 36:9267–9270

    Article  CAS  Google Scholar 

  • Declet-Perez C, Redline EM, Francis LF, Bates FS (2012) Role of localized network damage in block copolymer toughened epoxies. ACS Macro Lett 1:338–342

    Article  CAS  Google Scholar 

  • Declet-Perez C, Francis LF, Bates FS (2013) Cavitation in block copolymer modified epoxy revealed by in situ small-angle X-ray scattering. ACS Macro Lett 2:939–943

    Article  CAS  Google Scholar 

  • Declet-Perez C, Francis LF, Bates FS (2015) Deformation processes in block copolymer toughened epoxies. Macromolecules 48:3672–3684

    Article  CAS  Google Scholar 

  • Evans A, Williams S, Beaumont P (1985) On the toughness of particulate filled polymers. J Mater Sci 20:3668–3674

    Article  CAS  Google Scholar 

  • Francis R, Baby DK (2014) Toughening of epoxy thermoset with polystyrene-block-polyglycolic acid star copolymer: nanostructure-mechanical property correlation. Ind Eng Chem Res 53:17945–17951

    Article  CAS  Google Scholar 

  • Francis B, Rao VL, Poel GV, Posada F, Groeninckx G, Ramaswamy R, Thomas S (2006) Cure kinetics, morphological and dynamic mechanical analysis of diglycidyl ether of bisphenol-A epoxy resin modified with hydroxyl terminated poly (ether ether ketone) containing pendent tertiary butyl groups. Polymer 47:5411–5419

    Article  CAS  Google Scholar 

  • Gilbert A, Bucknall C (1991) Epoxy resin toughened with thermoplastic, vol 45. Wiley Online Library, Amsterdam, pp 289–298

    Google Scholar 

  • Gong W, Zeng K, Wang L, Zheng S (2008) Poly(hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 49:3318–3326

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33:9522–9534

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Bates FS (2001) Methacrylic block copolymers through metal-mediated living free radical polymerization for modification of thermosetting epoxy. Macromolecules 34:8593–8595

    Article  CAS  Google Scholar 

  • Hikmet R (1992) Piezoelectric networks obtained by photopolymerization of liquid crystal molecules. Macromolecules 25:5759–5764

    Article  CAS  Google Scholar 

  • Hikmet R, Lub J, Higgins J (1993) Anisotropic networks obtained by in situ cationic polymerization of liquid-crystalline divinyl ethers. Polymer 34:1736–1740

    Article  CAS  Google Scholar 

  • Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J Am Chem Soc 119:2749–2750

    Article  CAS  Google Scholar 

  • Hsich HS (1990) Morphology and properties control on rubber-epoxy alloy systems. Polym Eng Sci 30:493–510

    Article  CAS  Google Scholar 

  • Hu D, Zheng S (2011) Morphology and thermomechanical properties of epoxy thermosets modified with polysulfone-block-polydimethylsiloxane multiblock copolymer. J Appl Polym Sci 119:2933–2944

    Article  CAS  Google Scholar 

  • Hwang J, Park S, Cho K, Kim J, Park C, Oh T (1997) Toughening of cyanate ester resins with cyanated polysulfones. Polymer 38:1835–1843

    Article  CAS  Google Scholar 

  • Iijima T, Tomoi M, Tochimoto T, Kakiuchi H (1991) Toughening of epoxy resins by modification with aromatic polyesters. J Appl Polym Sci 43:463–474

    Article  CAS  Google Scholar 

  • Iijima T, Yoshioka N, Tomoi M (1992) Effect of cross-link density on modification of epoxy resins with reactive acrylic elastomers. Euro Polym J 28:573–581

    Article  CAS  Google Scholar 

  • Kinloch A, Shaw S, Hunston D (1983a) Deformation and fracture behaviour of a rubber-toughened epoxy: 2. Failure criteria. Polymer 24:1355–1363

    Article  CAS  Google Scholar 

  • Kinloch A, Shaw S, Tod D, Hunston D (1983b) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24:1341–1354

    Article  CAS  Google Scholar 

  • Kishore K (1993) Novel photocrosslinkable liquid-crystalline polymers: poly [bis (benzylidene)] esters. Macromolecules 26:2995–3003

    Article  Google Scholar 

  • Könczöl L, Döll W, Buchholz U, Mülhaupt R (1994) Ultimate properties of epoxy resins modified with a polysiloxane-polycaprolactone block copolymer. J Appl Polym Sci 54:815–826

    Article  Google Scholar 

  • Kong J, Tang Y, Zhang X, Gu J (2008) Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins. Polym Bull 60:229–236

    Article  CAS  Google Scholar 

  • Lange F, Radford K (1971) Fracture energy of an epoxy composite system. J Mater Sci 6:1197–1203

    Article  CAS  Google Scholar 

  • Li J, **ang Y, Zheng S (2015) Hyperbranched block copolymer from AB2 macromonomer: synthesis and its reaction-induced microphase separation in epoxy thermosets. J Polym Sci Part A: Polym Chem. doi:10.1002/pola.27784

    Google Scholar 

  • Lin Q, Yee AF, Earls JD, Hefner RE Jr, Sue HJ (1994) Phase transformations of a liquid crystalline epoxy during curing. Polymer 35:2679–2682

    Article  CAS  Google Scholar 

  • Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J Am Chem Soc 120:8963–8970

    Article  CAS  Google Scholar 

  • Litt M, Whang W, Yen K, Qian X (1993) Crosslinked liquid crystal polymers from liquid crystal monomers: synthesis and mechanical properties. J Polym Sci Part A: Polym Chem 31:183–191

    Article  CAS  Google Scholar 

  • Liu JD, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2008) Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41:7616–7624

    Article  CAS  Google Scholar 

  • Liu JD, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2009a) Effect of crosslink density on fracture behavior of model epoxies containing block copolymer nanoparticles. Polymer 50:4683–4689

    Article  CAS  Google Scholar 

  • Liu JD, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2009b) Strain rate effect on toughening of nano-sized PEP-PEO block copolymer modified epoxy. Acta Mater 57:2691–2701

    Article  CAS  Google Scholar 

  • Liu JD, Thompson ZJ, Sue HJ, Bates FS, Hillmyer MA, Dettloff M, Jacob G, Verghese N, Pham H (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules 43:7238–7243

    Article  CAS  Google Scholar 

  • Meeks AC (1974) Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins. Polymer 15:675–681

    Article  CAS  Google Scholar 

  • Meijerink J, Eguchi S, Ogata M, Ishii T, Amagi S, Numata S, Sashima H (1994) The influence of siloxane modifiers on the thermal expansion coefficient of epoxy resins. Polymer 35:179–186

    Article  CAS  Google Scholar 

  • Meng F, Zheng S, Li H, Liang Q, Liu T (2006) Formation of ordered nanostructures in epoxy thermosets: a mechanism of reaction-induced microphase separation. Macromolecules 39:5072–5080

    Article  CAS  Google Scholar 

  • Morgan RJ, Kong FM, Walkup CM (1984) Structure–property relations of polyethertriamine-cured bisphenol-A-diglycidyl ether epoxies. Polymer 25:375–386

    Article  CAS  Google Scholar 

  • Ni Y, Zheng S (2005) Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly (ε-caprolactone) blends cured with aromatic amines. Polymer 46:5828–5839

    Article  CAS  Google Scholar 

  • Ocando C, Tercjak A, Serrano E, Ramos JA, Corona-Galván S, Parellada MD, Fernández-Berridi MJ, Mondragon I (2008) Micro- and macrophase separation of thermosetting systems modified with epoxidized styrene-block-butadiene-block-styrene linear triblock copolymers and their influence on final mechanical properties. Polym Int 57:1333–1342

    Article  CAS  Google Scholar 

  • Ocando C, Fernández R, Tercjak A, Mondragon I, Eceiza A (2013) Nanostructured thermoplastic elastomers based on SBS triblock copolymer stiffening with low contents of epoxy system. Morphological behavior and mechanical properties. Macromolecules 46:3444–3451

    Article  CAS  Google Scholar 

  • Oritz MJ (1987) A continuum theory of crack shielding in ceramics. J Appl Mech 54:54–58

    Article  Google Scholar 

  • Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2475–2488

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1989) Toughening mechanisms in elastomer-modified epoxies: part 3. The effect of cross-link density. J Mater Sci 24:2571–2580

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  • Raghava R (1988) Development and characterization of thermosetting-thermoplastic polymer blends for applications in damage-tolerant composites. J Polym Sci Part A: Polym Chem 26:65–81

    Article  CAS  Google Scholar 

  • Raghavan D, He J, Hunston D, Hoffman D (2002) Strain rate dependence of fracture in a rubber-toughened epoxy system. J Adhes 78:723–739

    Article  CAS  Google Scholar 

  • Ratna D, Simon G (2001) Mechanical characterization and morphology of carboxyl randomized poly (2-ethyl hexyl acrylate) liquid rubber toughened epoxy resins. Polymer 42:7739–7747

    Article  CAS  Google Scholar 

  • Rebizant V, Venet AS, Tournilhac F, Girard-Reydet E, Navarro C, Pascault JP, Leibler L (2004) Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 37:8017–8027

    Article  CAS  Google Scholar 

  • Riew CK, Kinloch AJ (1993) Toughened plastics I: science and engineering. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Riew CK, Rowe E, Siebert A (1976) Rubber toughened thermosets. Adv Chem Ser 154:326

    Article  CAS  Google Scholar 

  • Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascault J (2003) ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 36:118–126

    Article  CAS  Google Scholar 

  • Ruiz-Pérez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer 49:4475–4488

    Article  Google Scholar 

  • Sigl LS, Mataga P, Dalgleish B, McMeeking R, Evans A (1988) On the toughness of brittle materials reinforced with a ductile phase. Acta Metall 36:945–953

    Article  CAS  Google Scholar 

  • Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13:29–35

    Article  CAS  Google Scholar 

  • Thio YS, Wu J, Bates FS (2006) Epoxy toughening using low molecular weight poly (hexylene oxide)-poly (ethylene oxide) diblock copolymers. Macromolecules 39:7187–7189

    Article  CAS  Google Scholar 

  • Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  • Thompson ZJ, Hillmyer MA, Liu J, Sue HJ, Dettloff M, Bates FS (2009) Block copolymer toughened epoxy: role of cross-link density. Macromolecules 42:2333–2335

    Article  CAS  Google Scholar 

  • Utracki L, Favis B (1989) Polymer alloys and blends. Marcel Dekker, New York

    Google Scholar 

  • Webb TW, Aifantis EC (1997) Loading rate dependence of stick–slip fracture in polymers. Mech Res Commun 24:115–121

    Article  Google Scholar 

  • Wu S, Guo Q, Peng S, Hameed N, Kraska M, Stühn B, Mai YW (2012) Toughening epoxy thermosets with block ionomer complexes: a nanostructure-mechanical property correlation. Macromolecules 45:3829–3840

    Article  CAS  Google Scholar 

  • Yang X, Yi F, **n Z, Zheng S (2009) Morphology and mechanical properties of nanostructured blends of epoxy resin with poly (ε-caprolactone)-block-poly (butadiene-co-acrylonitrile)-block-poly (ε-caprolactone) triblock copolymer. Polymer 50:4089–4100

    Article  CAS  Google Scholar 

  • Yee AF, Pearson RA (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2462–2474

    Article  CAS  Google Scholar 

  • Yi F, Yu R, Zheng S, Li X (2011) Nanostructured thermosets from epoxy and poly (2, 2, 2-trifluoroethyl acrylate)-block-poly (glycidyl methacrylate) diblock copolymer: demixing of reactive blocks and thermomechanical properties. Polymer 52:5669–5680

    Article  CAS  Google Scholar 

  • Yin M, Zheng S (2005) Ternary thermosetting blends of epoxy resin, poly (ethylene oxide) and poly (ε-caprolactone). Macromol Chem Phys 206:929–937

    Article  CAS  Google Scholar 

  • Yorkgitis E, Eiss N Jr, Tran C, Wilkes G, McGrath J (1985) In: Dušek K (eds) Epoxy resins and composites. Springer-Verlag Berlin, pp 79–109

    Google Scholar 

  • Yu R, Zheng S (2011) Morphological transition from spherical to lamellar nanophases in epoxy thermosets containing poly (ethylene oxide)-block-poly (ε-caprolactone)-block-polystyrene triblock copolymer by hardeners. Macromolecules 44:8546–8557

    Article  CAS  Google Scholar 

  • Zhang C, Yi Y, Li L, Zheng S (2014) Morphology and fracture toughness of nanostructured epoxy thermosets containing macromolecular miktobrushes composed of poly(ε-caprolactone) and polydimethylsiloxane side chains. J Mater Sci 49:1256–1266

    Article  CAS  Google Scholar 

  • Zheng S (2010) In: Pascault J, Williams R (eds) Epoxy polymers: new materials and innovations. Wiley-VCH, Weinheim, pp 79–108

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Li, L., Zheng, S. (2015). Mechanical Properties of Epoxy/Block Copolymer Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-18158-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18158-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18158-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation