Current Advances of Biogas Production via Anaerobic Digestion of Industrial Wastewater

  • Chapter
Advances in Bioprocess Technology

Abstract

Following the increasing energy demand due to rapid industrialization and anthropogenic carbon dioxide (CO2) emission from fossil fuel consumption, there is a need to identify a replacement of non-renewable sources for power generation to control the CO2 emission to the atmosphere. Though there are many renewable energy options available, these renewable sources have their limitations. Biogas production from anaerobic digestion (AD) can be a viable source of renewable energy especially when the feedstock for anaerobic digestion is taken from wastes generated by various industries. Treatment of these wastes not only reduces the environmental impact but also continuously generate renewable energy that could reduce the reliance of power consumption of an industry from the grid. This chapter provides an overview of AD process, current practices of AD of industrial wastewater and methods that could further improve biogas production from AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahring, B. K. (2003). Perspectives for anaerobic digestion. In B. K. Ahring (Ed.), Biomethanation i. Berlin: Springer.

    Chapter  Google Scholar 

  • Andersson, S., & Ingvar Nilsson, S. (2001). Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a Mor humus. Soil Biology and Biochemistry, 33(9), 1181–1191.

    Article  CAS  Google Scholar 

  • Beccari, M., Bonemazzi, F., Majone, M., & Riccardi, C. (1996). Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Research, 30(1), 183–189.

    Article  CAS  Google Scholar 

  • Borja, R., Alba, J., & Banks, C. J. (1996). Anaerobic digestion of wash waters derived from the purification of virgin olive oil using a hybrid reactor combining a filter and a sludge blanket. Process Biochemistry, 31(3), 219–224.

    Article  CAS  Google Scholar 

  • Borja, R., & Banks, C. J. (1994a). Anaerobic digestion of palm oil mill effluent using an up-flow anaerobic sludge blanket reactor. Biomass and Bioenergy, 6(5), 381–389.

    Article  CAS  Google Scholar 

  • Borja, R., & Banks, C. J. (1994b). Treatment of palm oil mill effluent by upflow anaerobic filtration. Journal of Chemical Technology and Biotechnology, 61(2), 103–109.

    Article  CAS  Google Scholar 

  • Bouallagui, H., et al. (2004). Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochemical Engineering Journal, 21(2), 193–197.

    Article  CAS  Google Scholar 

  • Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S., & Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective. Renewable and Sustainable Energy Reviews, 26, 717–726.

    Article  CAS  Google Scholar 

  • Choorit, W., & Wisarnwan, P. (2007). Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electronic Journal of Biotechnology, 10(3).

    Google Scholar 

  • Córdoba, P. R., Francese, A. P., & Siñeriz, F. (1995). Improved performance of a hybrid design over an anaerobic filter for the treatment of dairy industry wastewater at laboratory scale. Journal of Fermentation and Bioengineering, 79(3), 270–272.

    Article  Google Scholar 

  • Enerdata. (2014). Global energy statistical yearbook 2014, world energy statistics. World energy consumption & stats. Enerdata. Retrieved November 11, 2014, from https://yearbook.enerdata.net/.

  • Feng, L., Wang, H., Chen, Y., & Wang, Q. (2009). Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresource Technology, 100(1), 44–49.

    Article  CAS  Google Scholar 

  • Gerardi, M. H. (2003). The microbiology of anaerobic digesters. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Gerardi, M.H., (2006). ‘Wastewater Bacteria’, New Jersey: John Wiley & Sons, Inc.

    Google Scholar 

  • Hawkes, F. R., Donnelly, T., & Anderson, G. K. (1995). Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Research, 29(2), 525–533.

    Article  CAS  Google Scholar 

  • Hook, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change – A review. Energy Policy, 52, 797–809.

    Article  Google Scholar 

  • Karim, K., Rebecca, H., Thomas Klasson, K., & Al-Dahhan, M. H. (2005a). Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research, 39(15), 3597–3606.

    Article  CAS  Google Scholar 

  • Karim, K., Thomas Klasson, K., et al. (2005b). Anaerobic digestion of animal waste: Effect of mixing. Bioresource Technology, 96(14), 1607–1612.

    Article  CAS  Google Scholar 

  • Kim, M., Young-Ho, A., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion: Mesophilic vs. thermophilic. Water Research, 36(17), 4369–4385.

    Article  CAS  Google Scholar 

  • Leal, K., et al. (1998). A mesophilic digestion of brewery wastewater in an unheated anaerobic filter. Bioresource Technology, 65(1–2), 51–55.

    Article  CAS  Google Scholar 

  • Ling, YL (2007, July) Treatability of palm oil mill effluent (POME) using black liquor in an anaerobic treatment process (Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science July 2007 Acknowledgements).

    Google Scholar 

  • McNutt, M. (2013). Climate change impacts. Science, 341, 435.

    Article  CAS  Google Scholar 

  • Menon, S., James, H., Larissa, N., & Yunfeng, L. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250–2253.

    Article  CAS  Google Scholar 

  • Mustafa, E. E., Hale, O., Recep, K. D., & Izzet, O. (2011). Anaerobic treatment of industrial effluents: An overview of applications. In F. S. G. Einschlag (Ed.), Waste water – Treatment and reutilization. New York, NY: InTech.

    Google Scholar 

  • Patel, H., & Madamwar, D. (2002). Effects of temperatures and organic loading rates on biomethanation of acidic petrochemical wastewater using an anaerobic upflow fixed-film reactor. Bioresource Technology, 82(1), 65–71.

    Article  CAS  Google Scholar 

  • Perez, M., Rodriguez-Cano, R., Romero, L. I., & Sales, D. (2007). Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater. Bioresource Technology, 98(18), 3456–3463.

    Article  CAS  Google Scholar 

  • Pind, P. F., Angelidaki, I., & Ahring, B. K. (2003). Dynamics of the anaerobic process: Effects of volatile fatty acids. Biotechnology and Bioengineering, 82(7), 791–801.

    Article  CAS  Google Scholar 

  • Poh, P. E., & Chong, M. F. (2009). Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresource Technology, 100, 1–9.

    Article  CAS  Google Scholar 

  • Sánchez, E., Borja, R., Travieso, L., Martín, A., & Colmenarejo, M. F. (2005). Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresource Technology, 96(3), 335–344.

    Article  Google Scholar 

  • Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37, 181–189.

    Article  Google Scholar 

  • Sung, S., & Santha, H. (2003). Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes. Water Research, 37(7), 1628–1636.

    Article  CAS  Google Scholar 

  • Tong SL, Jaafar AB (2005) POME biogas capture, upgrading and utilisation. In: Proceedings of the PIPOC 2005 international palm oil congress (chemistry and technology). Petaling Jaya: Malaysian Palm Oil Board.

    Google Scholar 

  • UNFCCC. (2014). International emissions trading. New York, NY: United Nations Framework Convention on Climate Change.

    Google Scholar 

  • Van Lier, J. B., Rebac, S., & Lettinga, G. (1997). High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Science and Technology, 199–206.

    Google Scholar 

  • Veeken, A., Kalyuzhnyi, S., Scharff, H., & Hamelers, B. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering, 126(12), 1076–1081.

    Article  CAS  Google Scholar 

  • Wang, Z., & Banks, C. J. (2007). Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter. Waste Management, 27(3), 359–366.

    Article  CAS  Google Scholar 

  • Wiegant, W. M., Claassen, J. A., & Lettinga, G. (1985). Thermophilic anaerobic digestion of high strength wastewaters. Biotechnology and Bioengineering, 27(9), 1374–1381.

    Article  CAS  Google Scholar 

  • Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., & Subash, S. (2006a). Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. The Science of the Total Environment, 366(1), 187–196.

    Article  CAS  Google Scholar 

  • Yacob, S., Shirai, Y., Hassan, M. A., Wakisaka, M., & Subash, S. (2006b). Start-up operation of semi-commercial closed anaerobic digester for palm oil mill effluent treatment. Process Biochemistry, 41(4), 962–964.

    Article  CAS  Google Scholar 

  • Yu, H. Q., & Fang, H. H. (2003). Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: Influence of pH and temperature. Water Research, 37(1), 55–66.

    Article  CAS  Google Scholar 

  • Zeeman, G., & Sanders, W. (2001). Potential of anaerobic digestion of complex waste (water). Water Science and Technology, 44(8), 115–122.

    CAS  Google Scholar 

  • Zhang, Y., Yan, L., Chi, L., & Long, X. (2008). Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. Journal of Environmental Science (China), 20, 658–663.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng-Seng Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poh, P.E., Tan, D.T., Chan, ES., Tey, B.T. (2015). Current Advances of Biogas Production via Anaerobic Digestion of Industrial Wastewater. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_9

Download citation

Publish with us

Policies and ethics

Navigation