Technology-Enhanced Learning: A Learning Sciences Perspective

  • Living reference work entry
  • First Online:
Learning, Design, and Technology
  • 572 Accesses

Abstract

Technology-enhanced learning (TEL) can be broadly defined as contexts that incorporate ICT technologies in support of learning. There are multiple definitions of TEL in the literature, each influenced by the theoretical perspective in which it is grounded and by the emphasis sought. There is no doubt, though, that TEL is an interdisciplinary and dynamic field, constantly in a process of redefinition as new technologies emerge and their niche in education is explored. To overcome the trade-offs brought upon by the fluidity of technology and context, it is important to situate and explore TEL within the predominant learning paradigms. This contribution discusses TEL from the perspective of the learning sciences (LS). Anchoring the design, implementation, research, and evaluation of technology-enhanced learning in the LS can offer a theory-grounded perspective that can focus on, and explain, the added value of technology and connect theory with practice. This chapter begins with a discussion of the foundational aspects of the learning sciences, which are relevant to TEL. It then discusses key aspects of TEL, which relate to the design, implementation, assessment, and evaluation of technology-enhanced learning environments. The chapter then concludes with a discussion of areas that are still under-researched in technology-enhanced learning contexts, pertaining to the above issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amiel, T., & Reeves, T. C. (2008). Design-based research and educational technology: Rethinking technology and the research agenda. Educational Technology & Society, 11(4), 29–40.

    Google Scholar 

  • Anderson, T., & Shattuck, J. (2012). Design-based research a decade of progress in education research? Educational Researcher, 41(1), 16–25.

    Article  Google Scholar 

  • Baker, M., & Lund, K. (1997). Promoting reflective interactions in a computer-supported collaborative learning environment. Journal of Computer Assisted Learning, 13, 175–193.

    Article  Google Scholar 

  • Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52(1), 1–26.

    Article  Google Scholar 

  • Banks, J. A., Au, K. H., Ball, A. F., Bell, P., Gordon, E. W., Gutiérrez, K., … Nasir, N. I. S. (2007). Learning in and out of school in diverse environments: Life-long, life-wide, life-deep. Seattle, WA: The LIFE Center and the Center for Multicultural Education, University of Washington.

    Google Scholar 

  • Barab, S. A. (2006). Methodological toolkit for the learning scientist. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 151–170). New York, NY: Cambridge University Press.

    Google Scholar 

  • Barab, S. A., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1–14.

    Article  Google Scholar 

  • Barab, S. A., Squire, K. D., & Dueber, W. (2000). A co-evolutionary model for supporting the emergence of authenticity. Educational Technology Research and Development, 48(2), 37–62.

    Article  Google Scholar 

  • Bielaczyc, K., & Ow, J. (2014). Multi-player epistemic games: Guiding the enactment of classroom knowledge-building communities. International Journal of Computer-Supported Collaborative Learning, 9(1), 33–62.

    Article  Google Scholar 

  • Bransford, J., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

    Google Scholar 

  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2, 141–178.

    Article  Google Scholar 

  • Brown, A. L., & Campione, J. C. (1998). Designing a community of young learners: Theoretical and practical lessons. In N. M. Lambert & B. L. McCombs (Eds.), How students learn: Reforming schools through learner-centered education (vol. xiv, pp. 153–186). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Buckley, B. C., Gobert, J. D., Kindfield, A. C., Horwitz, P., Tinker, R. F., Gerlits, B., … Willett, J. (2004). Model-based teaching and learning with BioLogicaâ„¢: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23–41.

    Google Scholar 

  • Chan, C. K., & Aalst, J. (2008). Collaborative inquiry and knowledge building in networked multimedia environments. In International handbook of information technology in primary and secondary education (pp. 299–316).

    Chapter  Google Scholar 

  • Chan, T.-W., Roschelle, J., Hsi, S., Kinshuk, Sharples, M., Brown, T., … Norris, C. (2006). One-to-one technology-enhanced learning: An opportunity for global research collaboration. Research and Practice in Technology Enhanced Learning, 1(01), 3–29.

    Google Scholar 

  • Collins, A. (1992). Toward a design science of education. In E. Scanlon & T. O. Shea (Eds.), New directions in educational technology (pp. 15–22). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Collins, A., & Halverson, R. (2009). Rethinking education in the age of technology: The digital revolution and schooling in America. New York, NY: Teachers College Press.

    Google Scholar 

  • Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. American Educator, 15(3), 6–11.

    Google Scholar 

  • Cuban, L. (1990). Reform again, again, and again. Educational Researcher, 19(1), 3–13.

    Article  Google Scholar 

  • Cuban, L. (1993). Computers meet classroom: Classroom wins. Teachers College Record, 95(2), 185–210.

    Google Scholar 

  • Daniels, H. (2011). Vygotsky and psychology. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 673–696). Chichester, NH: Wiley-Blackwell Publishing Ltd.

    Google Scholar 

  • Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12(1), 91–142.

    Article  Google Scholar 

  • de Jong, T. (2006). Technological advances in inquiry learning. Science, 312, 532–533.

    Article  Google Scholar 

  • Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8. doi:10.3102/0013189X032001005

    Article  Google Scholar 

  • Dewey, J. (1903). Democracy in education. The Elementary School Teacher, 4(4), 193–204.

    Article  Google Scholar 

  • Donnelly, D. F., Linn, M. C., & Ludvigsen, S. (2014). Impacts and characteristics of computer-based science inquiry learning environments for precollege students. Review of Educational Research. doi:10.3102/0034654314546954

  • Drachsler, H., & Greller, W. (2012). The pulse of learning analytics understandings and expectations from the stakeholders. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 120–129). Vancouver, BC: ACM.

    Google Scholar 

  • Drachsler, H., Verbert, K., Manouselis, N., Vuorikari, R., Wolpers, M., & Lindstaedt, S. (2012). Preface [special issue on dataTEL – Data supported research in technology-enhanced learning]. International Journal Technology Enhanced Learning, 4(1/2), 1–10.

    Google Scholar 

  • Eberle, J., Lund, K., Tchounikine, P., & Fischer, F. (Eds.). (2016). Grand challenge problems in technology-enhanced learning II: MOOCs and beyond. Cham, Germany: SpringerBriefs in Education. doi:10.1007/978-3-319-12562-6_1

    Google Scholar 

  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. The Journal of the Learning Sciences, 11, 105–121. doi:10.1207/S15327809JLS1101_4

    Article  Google Scholar 

  • Efstathiou, I., Kyza, E. A., & Georgiou, Y. (2017). An inquiry-based augmented reality mobile learning approach to fostering primary school students’ historical reasoning in non-formal settings. Interactive Learning Environments, 1–20. doi:10.1080/10494820.2016.1276076.

  • Elmore, R. F. (1990). Restructuring schools: The next generation of educational reform. San Francisco, CA: The Jossey-Bass Education Series.

    Google Scholar 

  • Engeström, Y. (2011). From design experiments to formative interventions. Theory & Psychology, 21(5), 598–628.

    Article  Google Scholar 

  • Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399–483.

    Article  Google Scholar 

  • Feyzi-Behnagh, R., Azevedo, R., Legowski, E., Reitmeyer, K., Tseytlin, E., & Crowley, R. S. (2014). Metacognitive scaffolds improve self-judgments of accuracy in a medical intelligent tutoring system. Instructional Science, 42(2), 159–181.

    Article  Google Scholar 

  • Fishman, B. J., Penuel, W. R., Allen, A. R., Cheng, B. H., & Sabelli, N. (2013). Design-based implementation research: An emerging model for transforming the relationship of research and practice. National Society for the Study of Education, 112(2), 136–156.

    Google Scholar 

  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi:10.3102/0034654312457206

    Article  Google Scholar 

  • Gago, J. M., Ziman, J., Caro, P., Constantinou, C. P., Davis, G., Parchmann, I., … Sjoberg, S. (2004). Europe needs more scientists: increasing human resources for science and technology in Europe. Report of the high level group on human resources for science and technology in Europe. [Online]. http://ec.europa.eu/research/conferences/2004/sciprof/pdf/final_en.pdf

  • Gomez, K., Kyza, E. A., & Manevice, N. (2018). So this is going to be a collaboration? Teachers, researchers, and co-design. In F. Fischer, C. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences. New York, NY: Routledge.

    Google Scholar 

  • Granger, E., Bevis, T., Saka, Y., Southerland, S., Sampson, V., & Tate, R. (2012). The efficacy of student-centered instruction in supporting science learning. Science, 338(6103), 105–108.

    Article  Google Scholar 

  • Gulikers, J. T., Bastiaens, T. J., & Martens, R. L. (2005). The surplus value of an authentic learning environment. Computers in Human Behavior, 21(3), 509–521.

    Article  Google Scholar 

  • Gutiérrez, K. D. (2016). 2011 AERA presidential address: Designing resilient ecologies social design experiments and a new social imagination. Educational Researcher, 45(3), 187–196.

    Article  Google Scholar 

  • Gutiérrez, K. D., & Jurow, A. S. (2016). Social design experiments: Toward equity by design. Journal of the Learning Sciences, 25(4), 565–598.

    Article  Google Scholar 

  • Hannafin, M. J., & Land, S. M. (1997). The foundations and assumptions of technology-enhanced student-centered learning environments. Instructional Science, 25(3), 167–202. doi:10.1023/a:1002997414652

    Article  Google Scholar 

  • Herrington, J., & Oliver, R. (2000). An instructional design framework for authentic learning environments. Educational Technology Research and Development, 48(3), 23–48.

    Article  Google Scholar 

  • Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., … Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12–21.

    Google Scholar 

  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.

    Article  Google Scholar 

  • Hoadley, C., & Van Haneghan, J. (2011). The learning sciences: Where they came from and what it means for instructional designers. In Trends and issues in instructional design and technology (3rd ed.pp. 53–63). New York, NY: Pearson.

    Google Scholar 

  • Jackson, S. L., Stratford, S. J., Krajcik, J., & Soloway, E. (1994). Making dynamic modeling accessible to precollege science students. Interactive Learning Environments, 4(3), 233–257.

    Article  Google Scholar 

  • Järvelä, S., Häkkinen, P., Arvaja, M., & Leinonen, P. (2004). Instructional support in CSCL. In J. W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), What we know about CSCL (pp. 115–139). New York, NY: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Jeong, H., & Hmelo-Silver, C. E. (2016). Seven affordances of computer-supported collaborative learning: How to support collaborative learning? How can technologies help? Educational Psychologist, 51(2), 247–265.

    Article  Google Scholar 

  • Joseph, D. (2004). The practice of design-based research: Uncovering the interplay between design, research, and the real-world context. Educational Psychologist, 39(4), 235–242.

    Article  Google Scholar 

  • Kafai, Y., Fields, D., & Searle, K. (2014). Electronic textiles as disruptive designs: Supporting and challenging maker activities in schools. Harvard Educational Review, 84(4), 532–556.

    Article  Google Scholar 

  • Kali, Y., & Linn, M. C. (2008). Technology-enhanced support strategies for inquiry learning. In Handbook of research on educational communications and technology (pp. 145–161). New York, NY: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Kirschner, P. A., Beers, P. J., Boshuizen, H. P., & Gijselaers, W. H. (2008). Coercing shared knowledge in collaborative learning environments. Computers in Human Behavior, 24(2), 403–420.

    Article  Google Scholar 

  • Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., Häkkinen, P., & Fischer, F. (2007). Specifying computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(2), 211–224.

    Article  Google Scholar 

  • Koh, E., Cho, Y. H., Caleon, I., & Wei, Y. (2014). Where are we now? Research trends in the learning sciences. In J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Jurow, … L. D’Amico. (Eds.), Proceedings of the international conference of the learning sciences (ICLS) 2014 (Part 1) (pp. 535–542). Boulder, CO: International Society of the Learning Sciences.

    Google Scholar 

  • Kollar, I., Fischer, F., & Slotta, J. D. (2007). Internal and external scripts in computer-supported collaborative inquiry learning. Learning and Instruction, 17(6), 708–721.

    Article  Google Scholar 

  • Kolodner, J. L. (2004). The learning sciences: Past, present, future. Educational Technology, 44(3), 34–40.

    Google Scholar 

  • Kozulin, A., Gindis, B., Ageyev, V. S., & Miller, S. M. (Eds.). (2003). Vygotsky’s educational theory in cultural context. Learning in doing: Social, cognitive, and computational perspectives. Port Chester, NY: Cambridge University Press.

    Google Scholar 

  • Kuhn, D. (2007). Is direct instruction an answer to the right question? Educational Psychologist, 42(2), 109–113.

    Article  Google Scholar 

  • Kyza, E. A. (2009). Middle-school Students’ reasoning about alternative hypotheses in a Scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277–311.

    Article  Google Scholar 

  • Kyza, E. A., Constantinou, C. P., & Spanoudis, G. (2011). Sixth Graders’ co-construction of explanations of a disturbance in an ecosystem: Exploring relationships between grou**, reflective scaffolding, and evidence-based explanations. International Journal of Science Education, 33(18), 2489–2525. doi:10.1080/09500693.2010.550951

    Article  Google Scholar 

  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517–538.

    Article  Google Scholar 

  • Looi, C. K., Seow, P., Zhang, B., So, H. J., Chen, W., & Wong, L. H. (2010). Leveraging mobile technology for sustainable seamless learning: A research agenda. British Journal of Educational Technology, 41(2), 154–169.

    Article  Google Scholar 

  • Lowyck, J. (2014). Bridging learning theories and technology-enhanced environments: A critical appraisal of its history. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 3–20). New York, NY: Springer.

    Chapter  Google Scholar 

  • Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender systems in technology enhanced learning. In Recommender systems handbook (pp. 387–415). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Mayer, R. E. (2003). Theories of learning and their application to technology. In H. F. O’Neil Jr., R. S. Perez, & H. F. O’Neil (Eds.), Technology applications in education: A learning view (pp. 127–157). New York, NY: Routledge.

    Google Scholar 

  • Merriënboer, J. J. G., & Bruin, A. B. H. (2014). Research paradigms and perspectives on learning. In M. J. Spector, D. M. Merrill, J. Elen, & J. M. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 21–29). New York, NY: Springer.

    Chapter  Google Scholar 

  • Miller, M., & Hadwin, A. (2015). Scripting and awareness tools for regulating collaborative learning: Changing the landscape of support in CSCL. Computers in Human Behavior, 52, 573–588.

    Article  Google Scholar 

  • Milrad, M., Wong, L.-H., Sharples, M., Hwang, G.-J., Looi, C.-K., & Ogata, H. (2013). Seamless learning: An international perspective on next-generation technology-enhanced learning. In Z. L. Berge & L. Y. Muilenburg (Eds.), Handbook of mobile learning (pp. 95–108). New York, NY: Routledge.

    Google Scholar 

  • Nasir, N., Rosebery, A., Warren, B., & Lee, C. D. (2014). Learning as a cultural process: Achieving equity through diversity. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed.pp. 489–504). New York, NY: Cambridge University Press.

    Google Scholar 

  • National Research Council. (1996). The National Science Education Standards. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (2009). Learning science in informal environments: People, places, and pursuits. Committee on learning science in informal environments. In P. Bell, B. Lewenstein, A. W. Shouse, & M. A. Feder (Eds.), Board on science education, Center for Education. Division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students’ assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711–744. doi:10.1002/tea.20420.

    Article  Google Scholar 

  • Penuel, W. R., Cole, M., & O’Neill, D. K. (2016). Introduction to the special issue. Journal of the Learning Sciences, 25(4), 487–496. doi:10.1080/10508406.2016.1215753.

    Article  Google Scholar 

  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., … Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337–386.

    Google Scholar 

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273–304.

    Article  Google Scholar 

  • Reiser, B. J., & Tabak, I. (2014). Scaffolding. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 44–62). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computers & Education, 59(3), 893–906.

    Article  Google Scholar 

  • Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & Means, B. M. (2000). Changing how and what children learn in school with computer-based technologies. The future of children, 76–101.

    Google Scholar 

  • Rose, C. P. (2018). Learning analytics in the learning sciences. In F. Fischer, C. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences. New York, NY: Routledge.

    Google Scholar 

  • Säljö, R. (2010). Digital tools and challenges to institutional traditions of learning: Technologies, social memory and the performative nature of learning. Journal of Computer Assisted Learning, 26(1), 53–64.

    Article  Google Scholar 

  • Sawyer, T. (Ed.). (2006). The Cambridge handbook of the learning sciences. New York, NY: Cambridge University Press.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–115). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102.

    Article  Google Scholar 

  • Schmidt, H. G., Loyens, S. M., Van Gog, T., & Paas, F. (2007). Problem-based learning is compatible with human cognitive architecture: Commentary on Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 91–97.

    Article  Google Scholar 

  • Schwarz, B. B., de Groot, R., Mavrikis, M., & Dragon, T. (2015). Learning to learn together with CSCL tools. International Journal of Computer-Supported Collaborative Learning, 10(3), 239–271.

    Article  Google Scholar 

  • Slotta, J. D., & Najafi, H. (2013). Supporting collaborative knowledge construction with Web 2.0 technologies. In Emerging technologies for the classroom (pp. 93–112). New York, NY: Springer.

    Chapter  Google Scholar 

  • Stahl, G. (2014). The constitution of group cognition. In L. Shapiro (Ed.), The Routledge handbook of embodied cognition (pp. 335–346). New York, NY: Routledge.

    Google Scholar 

  • Stahl, G., Koschmann, T., & Suthers, D. (2014). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 479–500). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Tabak, I., & Baumgartner, E. (2004). The teacher as partner: Exploring participant structures, symmetry, and identity work in scaffolding. Cognition and Instruction, 22(4), 393–429.

    Article  Google Scholar 

  • Tabak, I., & Reiser, B. J. (2008). Software-realized inquiry support for cultivating a disciplinary stance. Pragmatics & Cognition, 16(2), 307–355.

    Article  Google Scholar 

  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning a second-order meta-analysis and validation study. Review of Educational Research, 81(1), 4–28.

    Article  Google Scholar 

  • Walkington, C. A. (2013). Using adaptive learning technologies to personalize instruction to student interests: The impact of relevant contexts on performance and learning outcomes. Journal of Educational Psychology, 105(4), 932.

    Article  Google Scholar 

  • Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5–23.

    Article  Google Scholar 

  • Warschauer, M., & Matuchniak, T. (2010). New technology and digital worlds: Analyzing evidence of equity in access, use, and outcomes. Review of Research in Education, 34(1), 179–225.

    Article  Google Scholar 

  • Wiliam, D., & Black, P. (1996). Meanings and consequences: A basis for distinguishing formative and summative functions of assessment? British Educational Research Journal, 22(5), 537–548.

    Article  Google Scholar 

  • Williams, M., & Linn, M. C. (2002). WISE inquiry in fifth grade biology. Research in Science Education, 32(4), 415–436.

    Article  Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). Role of tutoring in problem-solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17(2), 89–100.

    Article  Google Scholar 

  • Yang, Y., & van Aalst, J. C. W. (2015). Assessment and collaborative inquiry: A review of assessment-based interventions in technology-enhanced K-14 education. In O. Lindwall, P. Hakkinen, T. Koschmann, P. Tchounikine, & S. Ludvigsen (Eds.), Exploring the material conditions of learning: The computer supported collaborative learning (CSCL) conference 2015 (vol. 1, pp. 190–196). Gothenburg, Sweden: The International Society of the Learning Sciences.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni A. Kyza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kyza, E.A. (2017). Technology-Enhanced Learning: A Learning Sciences Perspective. In: Spector, M., Lockee, B., Childress, M. (eds) Learning, Design, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17727-4_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17727-4_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17727-4

  • Online ISBN: 978-3-319-17727-4

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics

Navigation