Therapeutic Options: Lifestyle Measures and Pharmacological Approaches

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Preventing cardiovascular disease by lifestyle and therapeutic intervention is a broad topic, about which an enormous amount of research has been conducted and published. This chapter shall focus largely on the primary prevention of atherosclerosis and arteriosclerosis. Although frequently confused, these are in reality distinct disorders, differing in their underlying pathophysiology. As such preventative therapeutic strategies are likely to differ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freeman B, Gartner C, Hall W, Chapman S (2010) Forecasting future tobacco control policy: where to next? Aust N Z J Public Health 34(5):447–450

    Article  PubMed  Google Scholar 

  2. Howard G, Wagenknecht LE, Burke GL et al (1998) Cigarette smoking and progression of atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) study. JAMA 279(2):119–124

    Article  CAS  PubMed  Google Scholar 

  3. Doll R, Peto R, Boreham J, Sutherland I (2004) Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ 328(7455):1519

    Article  PubMed Central  PubMed  Google Scholar 

  4. Alvarez LR, Balibrea JM, Surinach JM et al (2013) Smoking cessation and outcome in stable outpatients with coronary, cerebrovascular, or peripheral artery disease. Eur J Prev Cardiol 20(3):486–495

    Article  PubMed  Google Scholar 

  5. Munafo MR, Tilling K, Ben-Shlomo Y (2009) Smoking status and body mass index: a longitudinal study. Nicotine Tob Res 11(6):765–771

    Article  PubMed  Google Scholar 

  6. Asthana A, Piper ME, McBride PE et al (2012) Long-term effects of smoking and smoking cessation on exercise stress testing: three-year outcomes from a randomized clinical trial. Am Heart J 163(1):81–87.e1

    Article  PubMed Central  PubMed  Google Scholar 

  7. Critchley JA, Unal B (2004) Is smokeless tobacco a risk factor for coronary heart disease? A systematic review of epidemiological studies. Eur J Cardiovasc Prev Rehabil 11(2):101–112

    Article  PubMed  Google Scholar 

  8. Diez-Roux AV, Nieto FG, Comstock GW et al (1995) The relationship of active and passive smoking to carotid atherosclerosis 12–14 years later. Prev Med 24(1):48–55

    Article  CAS  PubMed  Google Scholar 

  9. Cahill K, Srevens S, Perera R, Lancaster T (2013) Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev (5):CD009329

    Google Scholar 

  10. Mills EJ, Thorlund K, Eapen S et al (2014) Cardiovascular events associated with smoking cessation pharmacotherapies: a network meta-analysis. Circulation 129(1):28–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ronksley PE, Brien SE, Turner BJ et al (2011) Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ 342:d671

    Article  PubMed Central  PubMed  Google Scholar 

  12. Estruch R, Sacanella E, Mota F et al (2011) Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: a randomised cross-over trial. Nutr Metab Cardiovasc Dis 21(1):46–53

    Article  CAS  PubMed  Google Scholar 

  13. Mozaffarian D, Fahimi S, Singh GM et al (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371(7):624–634

    Article  PubMed  Google Scholar 

  14. Powles J, Fahimi S, Micha R et al (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3(12):e003733

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zimmers T, Golomb RI (1991) Cases in electrocardiography. Am J Emerg Med 9(6):588–591

    Article  CAS  PubMed  Google Scholar 

  16. He FJ, Pombo-Rodrigues S, Macgregor GA (2014) Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4(4):e004549

    Article  PubMed Central  PubMed  Google Scholar 

  17. Li XY, Cai XL, Bian PD, Hu LR (2012) High salt intake and stroke: meta-analysis of the epidemiologic evidence. CNS Neurosci Ther 18(8):691–701

    Article  PubMed  Google Scholar 

  18. He FJ, Li J, Macgregor GA (2013) Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev (4):CD004937

    Google Scholar 

  19. He FJ, MacGregor GA (2004) Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev (3):CD004937

    Google Scholar 

  20. He FJ, Marciniak M, Visagie E et al (2009) Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension 54(3):482–488

    Article  CAS  PubMed  Google Scholar 

  21. Cook NR, Cutler JA, Obarzanek E et al (2007) Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334(7599):885–888

    Article  PubMed Central  PubMed  Google Scholar 

  22. Taylor RS, Ashton KE, Moxham T et al (2011) Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev (7):CD009217

    Google Scholar 

  23. Brinsden HC, He FJ, Jenner KH, Macgregor GA (2013) Surveys of the salt content in UK bread: progress made and further reductions possible. BMJ Open 3:e002936

    Article  PubMed Central  PubMed  Google Scholar 

  24. Brown IJ, Dyer AR, Chan Q et al (2013) Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am J Epidemiol 177(11):1180–1192

    Article  PubMed Central  PubMed  Google Scholar 

  25. Blanch N, Clifton PM, Keogh JB (2014) Postprandial effects of potassium supplementation on vascular function and blood pressure: a randomised cross-over study. Nutr Metab Cardiovasc Dis 24(2):148–154

    Article  CAS  PubMed  Google Scholar 

  26. Cheriyan J, McEniery CM, Wilkinson IB (2010) Hypertension, Oxford specialist handbooks. Oxford University Press, Oxford, p 322

    Google Scholar 

  27. Oberleithner H, Callies C, Kusche-Vihrog (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci U S A 106(8):2829–2834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Atkins JL, Whincup PH, Morris RW et al (2014) High diet quality is associated with a lower risk of cardiovascular disease and all-cause mortality in older men. J Nutr 144(5):673–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sacks FM, Svetkey LP, Vollmer WM et al (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344(1):3–10

    Article  CAS  PubMed  Google Scholar 

  30. Liu S, Manson JE, Lee IM et al (2000) Fruit and vegetable intake and risk of cardiovascular disease: the women’s health study. Am J Clin Nutr 72(4):922–928

    CAS  PubMed  Google Scholar 

  31. Noto H, Goto A, Tsujimoto T et al (2013) Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PLoS One 8(1):e55030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T (2013) Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr 110(7):1178–1187

    Article  CAS  PubMed  Google Scholar 

  33. Lee IM, Paffenbarger RS Jr (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard alumni health study. Am J Epidemiol 151(3):293–299

    Article  CAS  PubMed  Google Scholar 

  34. Sesso HD, Paffenbarger RS Jr, Lee IM (2000) Physical activity and coronary heart disease in men: the Harvard alumni health study. Circulation 102(9):975–980

    Article  CAS  PubMed  Google Scholar 

  35. Delaney JA, Jensky NE, Criqui MH et al (2013) The association between physical activity and both incident coronary artery calcification and ankle brachial index progression: the multi-ethnic study of atherosclerosis. Atherosclerosis 230(2):278–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Newby DE, Cockcroft JR, Wilkinson IB (2005) Coronary heart disease: your questions answered. Elsevier/Churchill, Livingstone

    Google Scholar 

  37. Walther C, Gaede L, Adams V et al (2009) Effect of increased exercise in school children on physical fitness and endothelial progenitor cells: a prospective randomized trial. Circulation 120(22):2251–2259

    Article  PubMed  Google Scholar 

  38. Chomiuk T, Folga A, Mamcarz A (2013) The influence of systematic pulse-limited physical exercise on the parameters of the cardiovascular system in patients over 65 years of age. Arch Med Sci 9(2):201–209

    Article  PubMed Central  PubMed  Google Scholar 

  39. Farpour-Lambert NJ, Aggoun Y, Marchand LM et al (2009) Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J Am Coll Cardiol 54(25):2396–2406

    Article  CAS  PubMed  Google Scholar 

  40. Lewington S, Clarke R, Qizilbash N et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    Article  PubMed  Google Scholar 

  41. Vidt DG (2000) Alpha-blockers and congestive heart failure: early termination of an arm of the ALLHAT trial. Cleve Clin J Med 67(6):429–433

    Article  CAS  PubMed  Google Scholar 

  42. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Lipid-Lowering Treatment to Prevent Heart Attack Trial (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288(23):2981–2997

    Article  Google Scholar 

  43. Lindholm LH, Carlberg B, Samuelsson O (2005) Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 366(9496):1545–1553

    Article  CAS  PubMed  Google Scholar 

  44. van den Meiracker AH, van Montfrans GA (2006) The most recent study into blood pressure lowering by amlodipine: the beginning of the end for the beta-blockers. Ned Tijdschr Geneeskd 150(16):886–888

    PubMed  Google Scholar 

  45. Kampus P, Serg M, Kals J et al (2011) Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension 57(6):1122–1128

    Article  CAS  PubMed  Google Scholar 

  46. Dhakam Z, Yasmin, McEniery CM et al (2008) A comparison of atenolol and nebivolol in isolated systolic hypertension. J Hypertens 26(2):351–356

    Article  CAS  PubMed  Google Scholar 

  47. Einhorn PT, Davis BR, Wright JT et al (2010) ALLHAT: still providing correct answers after 7 years. Curr Opin Cardiol 25(4):355–365

    Article  PubMed  Google Scholar 

  48. Savarese G, Gotto AM Jr, Paolillo S et al (2013) Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. J Am Coll Cardiol 62(22):2090–2099

    Article  CAS  PubMed  Google Scholar 

  49. Taylor F, Huffman MD, Macedo AF et al (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev (1):CD004816

    Google Scholar 

  50. Naci H, Brugts J, Ades T (2013) Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcomes 6(4):390–399

    Article  PubMed  Google Scholar 

  51. Dupuis J, Tardif JC, Cernacek P, Theroux P (1999) Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation 99(25):3227–3233

    Article  CAS  PubMed  Google Scholar 

  52. Lavigne PM, Karas RH (2013) The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression. J Am Coll Cardiol 61(4):440–446

    Article  CAS  PubMed  Google Scholar 

  53. Duggal JK, Singh M, Attri N et al (2010) Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery disease. J Cardiovasc Pharmacol Ther 15(2):158–166

    Article  CAS  PubMed  Google Scholar 

  54. Sibley CT, Vavere AL, Gottlieb I et al (2013) MRI-measured regression of carotid atherosclerosis induced by statins with and without niacin in a randomised controlled trial: the NIA plaque study. Heart 99(22):1675–1680

    Article  CAS  PubMed  Google Scholar 

  55. Zambon A, Zhao XQ, Brown BG et al (2014) Effects of niacin combination therapy with statin or bile acid resin on lipoproteins and cardiovascular disease. Am J Cardiol 113(9):1494–1498

    Article  CAS  PubMed  Google Scholar 

  56. HPS2-THRIVE Collaborative Group, Landrey MJ, Haynes R et al (2014) Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med 371(3):203–212

    Article  Google Scholar 

  57. Barter PJ, Caulfield M, Eriksson M et al (2007) Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 357(21):2109–2122

    Article  CAS  PubMed  Google Scholar 

  58. Luscher TF, Taddei S, Kaski JC et al (2012) Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J 33(7):857–865

    Article  PubMed Central  PubMed  Google Scholar 

  59. Stein EA, Mellis S, Yancopoulos GD et al (2012) Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 366(12):1108–1118

    Article  CAS  PubMed  Google Scholar 

  60. Haffner SM, Lehto S, Ronnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234

    Article  CAS  PubMed  Google Scholar 

  61. Collins R, Armitage J, Parish S et al (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361(9374):2005–2016

    Article  PubMed  Google Scholar 

  62. Gaede P, Vedel P, Larsen N et al (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348(5):383–393

    Article  PubMed  Google Scholar 

  63. Look ARG, Wing RR, Bolin P et al (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369(2):145–154

    Article  Google Scholar 

  64. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131):837–853

    Article  Google Scholar 

  65. UKPDS Office, DTU (2014) UK prospective diabetes study (completed). https://www.dtu.ox.ac.uk/UKPDS/trialresults.php

  66. Hemmingsen B, Lund SS, Gluud C et al (2013) Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev (11):CD008143

    Google Scholar 

  67. Phung OJ, Schwartzman E, Allen RW et al (2013) Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med 30(10):1160–1171

    Article  CAS  PubMed  Google Scholar 

  68. Hemmingsen B, Christensen LL, Wetterslev J et al (2012) Comparison of metformin and insulin versus insulin alone for type 2 diabetes: systematic review of randomised clinical trials with meta-analyses and trial sequential analyses. BMJ 344:e1771

    Article  PubMed  Google Scholar 

  69. Ben-Shlomo Y, Spears M, Boustred C et al (2014) Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 63(7):636–646

    Article  PubMed  Google Scholar 

  70. van de Laar RJ, Stehouwer CD, Boreham CA et al (2011) Continuing smoking between adolescence and young adulthood is associated with higher arterial stiffness in young adults: the Northern Ireland Young Hearts Project. J Hypertens 29(11):2201–2209

    Article  PubMed  Google Scholar 

  71. Lerant B, Christina S, Olah L et al (2012) The comparative analysis of arterial wall thickness and arterial wall stiffness in smoking and non-smoking university students. Ideggyogy Sz 65(3–4):121–126

    PubMed  Google Scholar 

  72. Jain S, Mathur S, Mathur A et al (2012) Effect of tobacco use on arterial stiffness in community dwelling females. J Assoc Physicians India 60:20–23

    PubMed  Google Scholar 

  73. Hata K, Nakagawa T, Mizuno M et al (2012) Relationship between smoking and a new index of arterial stiffness, the cardio-ankle vascular index, in male workers: a cross-sectional study. Tob Induc Dis 10(1):11

    Article  PubMed Central  PubMed  Google Scholar 

  74. Cecelja M, Chowienczyk P (2009) Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 54(6):1328–1336

    Article  CAS  PubMed  Google Scholar 

  75. McEniery CM, Yasmin, Maki-Petaja KM et al (2010) The impact of cardiovascular risk factors on aortic stiffness and wave reflections depends on age: the Anglo-Cardiff Collaborative Trial (ACCT III). Hypertension 56(4):591–597

    Article  CAS  PubMed  Google Scholar 

  76. Johansen NB, Vistisen D, Brunner EJ et al (2012) Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study. PLoS One 7(5):e37165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wildman RP, Farhat GN, Patel AS et al (2005) Weight change is associated with change in arterial stiffness among healthy young adults. Hypertension 45(2):187–192

    Article  CAS  PubMed  Google Scholar 

  78. El Khoudary SR, Barinas-Mitchell E, White J et al (2012) Adiponectin, systolic blood pressure, and alcohol consumption are associated with more aortic stiffness progression among apparently healthy men. Atherosclerosis 225(2):475–480

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kaess BM, Rong J, Larson MG et al (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308(9):875–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. AlGhatrif M, Strait JB, Morrell CH et al (2013) Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore longitudinal study of aging. Hypertension 62(5):934–941

    Article  CAS  PubMed  Google Scholar 

  81. Yu-Jie W, Hui-Liang L, Bing L et al (2013) Impact of smoking and smoking cessation on arterial stiffness in healthy participants. Angiology 64(4):273–280

    Article  PubMed  Google Scholar 

  82. Siasos G, Tousoulis D, Kokkou E et al (2014) Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers. Am J Hypertens 27(1):38–45

    Article  CAS  PubMed  Google Scholar 

  83. Mattace-Raso FU, van der Cammen TJ, van den Elzen AP et al (2005) Moderate alcohol consumption is associated with reduced arterial stiffness in older adults: the Rotterdam study. J Gerontol A Biol Sci Med Sci 60(11):1479–1483

    Article  PubMed  Google Scholar 

  84. Sierksma A, Muller M, van der Schouw YT et al (2004) Alcohol consumption and arterial stiffness in men. J Hypertens 22(2):357–362

    Article  CAS  PubMed  Google Scholar 

  85. Avolio AP, Deng FQ, Li WQ et al (1985) Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 71(2):202–210

    Article  CAS  PubMed  Google Scholar 

  86. Lemogoum D, Ngatchou W, Janssen C et al (2012) Effects of hunter-gatherer subsistence mode on arterial distensibility in Cameroonian pygmies. Hypertension 60(1):123–128

    Article  CAS  PubMed  Google Scholar 

  87. Liu Z, Peng J, Lu F et al (2013) Salt loading and potassium supplementation: effects on ambulatory arterial stiffness index and endothelin-1 levels in normotensive and mild hypertensive patients. J Clin Hypertens (Greenwich) 15(7):485–496

    Article  CAS  Google Scholar 

  88. Dickinson KM, Clifton PM, Burrell LM et al (2014) Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function. Atherosclerosis 232(1):211–216

    Article  CAS  PubMed  Google Scholar 

  89. Polonia J, Maldonado J, Ramos R et al (2006) Estimation of salt intake by urinary sodium excretion in a Portuguese adult population and its relationship to arterial stiffness. Rev Port Cardiol 25(9):801–817

    PubMed  Google Scholar 

  90. Sacre JW, Jennings GL, Kingwell BA (2014) Exercise and dietary influences on arterial stiffness in cardiometabolic disease. Hypertension 63(5):888–893

    Article  CAS  PubMed  Google Scholar 

  91. O’Keefe JH, Patil HR, Lavie CJ et al (2012) Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc 87(6):587–595

    Article  PubMed Central  PubMed  Google Scholar 

  92. Beck DT, Martin JS, Casey DP, Braith RW (2013) Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens 26(9):1093–1102

    Article  PubMed Central  PubMed  Google Scholar 

  93. Cameron JD, Dart AM (1994) Exercise training increases total systemic arterial compliance in humans. Am J Physiol 266(2 Pt 2):H693–H701

    CAS  PubMed  Google Scholar 

  94. Ades PA, Savage PD, Lischke S et al (2011) The effect of weight loss and exercise training on flow-mediated dilatation in coronary heart disease: a randomized trial. Chest 140(6):1420–1427

    Article  PubMed Central  PubMed  Google Scholar 

  95. Ong KT, Delerme S, Pannier B et al (2011) Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens 29(6):1034–1042

    Article  CAS  PubMed  Google Scholar 

  96. McEniery CM, Schmitt M, Qasem A et al (2004) Nebivolol increases arterial distensibility in vivo. Hypertension 44(3):305–310

    Article  CAS  PubMed  Google Scholar 

  97. Dhakam Z, McEniery CM, Yasmin (2006) Atenolol and eprosartan: differential effects on central blood pressure and aortic pulse wave velocity. Am J Hypertens 19(2):214–219

    Article  CAS  PubMed  Google Scholar 

  98. Pannier BM, Guerin AP, Marchais SJ, London GM (2001) Different aortic reflection wave responses following long-term angiotensin-converting enzyme inhibition and beta-blocker in essential hypertension. Clin Exp Pharmacol Physiol 28(12):1074–1077

    Article  CAS  PubMed  Google Scholar 

  99. Vaitkevicius PV, Lane M, Spurgeon H et al (2001) A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci U S A 98(3):1171–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Fujimoto N, Hastings JL, Carrick-Ranson G et al (2013) Cardiovascular effects of 1 year of alagebrium and endurance exercise training in healthy older individuals. Circ Heart Fail 6(6):1155–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Wilkinson I, Cockroft J (2007) Cholesterol, lipids and arterial stiffness. In: Safar ME, Frohlich ED (eds) Atherosclerosis, large arteries and cardiovascular risk, vol 44, Advances in cardiology. Karger, Basel, pp 261–277

    Chapter  Google Scholar 

  102. Maki-Petaja KM, McEniery CM, Franklin SS, Wilkinson IB (2014) Arterial stiffness in chronic inflammation. In: Safar ME, O’Rourke MF, Frohlich ED (eds) Blood pressure and arterial wall mechanics in cardiovascular diseases. Springer, London, pp 435–444

    Chapter  Google Scholar 

  103. Maki-Petaja KM, Hall FC, Booth AD et al (2006) Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-alpha therapy. Circulation 114(11):1185–1192

    Article  CAS  PubMed  Google Scholar 

  104. Maki-Petaja KM, Elkhawad M, Cheriyan J et al (2012) Anti-tumor necrosis factor-alpha therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation 126(21):2473–2480

    Article  PubMed  Google Scholar 

  105. Zanoli L, Rastelli S, Inserra G et al (2014) Increased arterial stiffness in inflammatory bowel diseases is dependent upon inflammation and reduced by immunomodulatory drugs. Atherosclerosis 234(2):346–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian B. Wilkinson DM, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wilkinson, I.B., King, B.G. (2015). Therapeutic Options: Lifestyle Measures and Pharmacological Approaches. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation