Regulation of Autophagy in Health and Disease

  • Chapter
  • First Online:
Toxicity and Autophagy in Neurodegenerative Disorders

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 9))

Abstract

Macroautophagy (autopagy herein) is a cellular stress mechanism characterized by the engulfment of portions of cytoplasm, proteins and organelles in double or multimembrane vesicles. Cargo carried in these autophagic vesicles are then delivered and subsequently degraded by lysosomal/vacuolar systems. Autophagy occurs at low basal levels in all cell types (from yeast to mammals) under non-deprived conditions, performing homeostatic functions. Under conditions leading to cellular stress such as nutrient or growth factor deprivation, autophagy is activated to provide the cell with intracellular building blocks and substrates for energy generation. In addition to the ubiquitin-proteasome system, autophagy is a major degradation pathway for misfolded, mutant or abnormal proteins. Deregulations and abnormalities of autophagy are deleterious for all cell types including neurons. Consequently, autophagy abnormalities are observed in various neuronal diseases. Here, we summarize the basic autophagy machinery and its regulation, and provide a brief summary of the role of autophagy in healthy neurons and in major neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATG:

Autophagy related gene

BCL2:

B cell lymphoma 2

CBZ:

Carbamazepine

CMA:

Chaperone mediated autophagy

DETOR DEP:

Domain containing mTOR interacting protein

FAK:

Focal adhesion kinase

Foxo3:

Forkhead box O3

Hsc70:

Heat shock cognate protein 70

Hvps34:

Human vacuolar protein sorting 34

LAMP2a:

Lysosomal associated membrane protein 2 a

LC3:

Microtubule associated protein 1 light chain 3

Mfns:

Mitofusins

Mtorc1/2:

Mammalian Target of Rapamycin Complex 1 and 2

PEN2:

Presenilin enhancer 2

PI3K:

Phosphoinositide 3 kinase

PINK1:

PTEN induced putative kinase1

PS1/2:

Presenilin 1 and 2

Rag Ras:

Related GTP-binding protein

TSC:

Tuberous sclerosis complex

UPS:

Ubiquitin proteasome system

References

  1. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Paul S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays. 2008;30:1172–84.

    Article  CAS  PubMed  Google Scholar 

  3. Todde V, Veenhuis M, van der Klei IJ. Autophagy: principles and significance in health and disease. Biochim Biophys Acta. 2009;1792:3–13.

    Article  CAS  PubMed  Google Scholar 

  4. Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 1962;12:198–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 2011;334:1144–47.

    Article  CAS  PubMed  Google Scholar 

  6. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104:19500–05.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Curt A, Zhang J, Minnerly J, Jia K. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans. Dev Comp Immunol. 2014;45:214–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chargui A, El May MV. Autophagy mediates neutrophil responses to bacterial infection. APMIS. 2014;122:1047–58.

    CAS  PubMed  Google Scholar 

  9. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010;190:1005–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009;11:1433–7.

    Article  CAS  PubMed  Google Scholar 

  11. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495:389–93.

    Article  CAS  PubMed  Google Scholar 

  13. Ravikumar B, Moreau K, Rubinsztein DC. Plasma membrane helps autophagosomes grow. Autophagy. 2010;6:1184–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wong PM, Puente C, Ganley IG, Jiang XJ. The ULK1 complex sensing nutrient signals for autophagy activation. Autophagy. 2013;9:124–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, et al. (2010) Lysosomal proteolysis and autophagy require Presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141: 1146–U1191.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7:689–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112:1493–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chan EY, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29:157–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Vergne I, Deretic V. The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett. 2010;584:1313–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Foster FM, Traer CJ, Abraham SM, Fry MJ. The phosphoinositide (PI) 3-kinase family. J Cell Sci. 2003;116:3037–40.

    Article  CAS  PubMed  Google Scholar 

  23. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Panaretou C, Domin J, Cockcroft S, Waterfield MD. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem. 1997;272:2477–85.

    Article  CAS  PubMed  Google Scholar 

  25. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20:355–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15:741–50.

    Article  CAS  PubMed  Google Scholar 

  27. Proikas-Cezanne T, Codogno P. Beclin 1 or not Beclin 1. Autophag. 2011;7:671–2.

    Article  CAS  Google Scholar 

  28. Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof YD, et al. Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy. 2011;7:1448–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bakula D, Takacs Z, Proikas-Cezanne T. WIPI beta-propellers in autophagy-related diseases and longevity. Biochem Soc Trans. 2013;41:962–7.

    Article  CAS  PubMed  Google Scholar 

  30. Young ARJ, Chan EYW, Hu XW, Koch R, Crawshaw SG, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci. 2006;119:3888–900.

    Article  CAS  PubMed  Google Scholar 

  31. Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14:2201–14.

    Article  CAS  PubMed  Google Scholar 

  32. Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012;23:896–909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008;19:4762–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Romanov J, Walczak M, Ibiricu I, Schuchner S, Ogris E, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. Embo J. 2012;31:4304–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 1998;273:33889–92.

    Article  CAS  PubMed  Google Scholar 

  37. Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 1999;18:3888–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mizushima N, Yoshimori T, Ohsumi Y. Role of the Apg12 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2003;35:553–61.

    Article  CAS  PubMed  Google Scholar 

  39. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004;117:2805–12.

    Article  CAS  PubMed  Google Scholar 

  40. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36:2503–18.

    Article  CAS  PubMed  Google Scholar 

  41. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008;33:109–22.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson RG, Falck JR, Goldstein JL, Brown MS. Visualization of acidic organelles in intact cells by electron microscopy. Proc Natl Acad Sci U S A. 1984;81:4838–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20:21–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014;37:315–24.

    Article  CAS  PubMed  Google Scholar 

  47. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–82.

    Article  CAS  PubMed  Google Scholar 

  48. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell. 2005;19:15–26.

    Article  CAS  PubMed  Google Scholar 

  49. Wada Y, Sun-Wada GH, Kawamura N. Microautophagy in the visceral endoderm is essential for mouse early development. Autophagy. 2013;9:252–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001;114:2491–9.

    CAS  PubMed  Google Scholar 

  51. Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 1988;263:6797–805.

    CAS  PubMed  Google Scholar 

  52. Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem. 2000;275:27447–56.

    CAS  PubMed  Google Scholar 

  53. Terlecky SR, Dice JF. Polypeptide import and degradation by isolated lysosomes. J Biol Chem. 1993;268:23490–5.

    CAS  PubMed  Google Scholar 

  54. Kaushik S, Massey AC, Mizushima N, Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008;19:2179–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility Unanswered questions. Autophagy. 2013;9:1270–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997;137:825–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, et al. Chaperone-mediated autophagy at a glance. J Cell Sci. 2011;124:495–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, et al. Discovery of a novel type of autophagy targeting RNA. Autophagy. 2013;9:403–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Tato I, Bartrons R, Ventura F, Rosa JL. Amino Acids Activate Mammalian Target of Rapamycin Complex 2 (mTORC2) via PI3K/Akt Signaling. J Biol Chem. 2011;286:6128–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu YY, et al. Relieving Autophagy and 4EBP1 from Rapamycin Resistance. Mol Cell Biol. 2011;31:2867–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–30.

    Article  CAS  PubMed  Google Scholar 

  63. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensch G, Riveros M, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.

    Article  CAS  PubMed  Google Scholar 

  65. Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med. 2013;19:51–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38.

    Article  PubMed  CAS  Google Scholar 

  67. Thoreen CC. Many roads from mTOR to eIF4F. Biochem Soc Trans. 2013;41:913–6.

    Article  CAS  PubMed  Google Scholar 

  68. Zullo AJ, Jurcic Smith KL, Lee S. Mammalian target of Rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages. BMC Biochem. 2014;15:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem. 2014;289:2658–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Huang JX, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28:4104–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Cai D, Wang Y, Ottmann OG, Barth PJ, Neubauer A, et al. FLT3-ITD-, but not BCR/ABL-transformed cells require concurrent Akt/mTor blockage to undergo apoptosis after histone deacetylase inhibitor treatment. Blood. 2006;107:2094–7.

    Article  CAS  PubMed  Google Scholar 

  73. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17:1829–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Salido GM, Sage SO, Rosado JA. TRPC channels and store-operated Ca(2+) entry. Biochem Biophys Acta. 2009;1793:223–30.

    Article  CAS  PubMed  Google Scholar 

  75. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, et al. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:e144.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170:1101–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Criollo A, Vicencio JM, Tasdemir E, Maiuri MC, Lavandero S, et al. The inositol trisphosphate receptor in the control of autophagy. Autophagy. 2007;3:350–3.

    Article  CAS  PubMed  Google Scholar 

  78. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16:939–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  81. Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001;8:367–76.

    Article  CAS  PubMed  Google Scholar 

  82. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    Article  CAS  PubMed  Google Scholar 

  84. Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy. 2012;8:858–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Rixon HW, Brown G, Murray JT, Sugrue RJ. The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. J Gen Virol. 2005;86:375–84.

    Article  CAS  PubMed  Google Scholar 

  86. Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol. 2009;187:71–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Rowland AM, Richmond JE, Olsen JG, Hall DH, Bamber BA. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci. 2006;26:1711–20.

    Article  CAS  PubMed  Google Scholar 

  88. He C, Wei Y, Sun K, Li B, Dong X, et al. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell. 2013;154:1085–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012;74:277–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  CAS  PubMed  Google Scholar 

  91. McIntire SL, Garriga G, White J, Jacobson D, Horvitz HR. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992;8:307–22.

    Article  CAS  PubMed  Google Scholar 

  92. Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem. 2010;285:3499–509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ban BK, Jun MH, Ryu HH, Jang DJ, Ahmad ST, et al. Autophagy negatively regulates early axon growth in cortical neurons. Mol Cell Biol. 2013;33:3907–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, et al. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci. 2006;26:8057–68.

    Article  CAS  PubMed  Google Scholar 

  95. Tekirdag KA. Alteration in autophagic-lysosomal potential during ageing and neurological diseases: the microRNA perspective. Curr Pathobiol Rep. 2013;1:247–61.

    Article  Google Scholar 

  96. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature. 1992;360:672–4.

    Article  CAS  PubMed  Google Scholar 

  97. Scheuner D, Eckman C, Jensen M, Song X, Citron M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

    Article  CAS  PubMed  Google Scholar 

  98. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120:4081–91.

    Article  CAS  PubMed  Google Scholar 

  99. Selkoe DJ, Wolfe MS. Presenilin: running with scissors in the membrane. Cell. 2007;131:215–21.

    Article  CAS  PubMed  Google Scholar 

  100. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118:2190–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Li W, Tang Y, Fan Z, Meng Y, Yang G, et al. Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener. 2013;8:27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, et al. Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res. 2014;81:54–63.

    Article  CAS  PubMed  Google Scholar 

  103. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, et al. Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005;171:87–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  PubMed  Google Scholar 

  105. Ross CA, Pickart CM. The ubiquitin-proteasome pathway in Parkinson’s disease and other neurodegenerative diseases. Trends Cell Biol. 2004;14:703–11.

    Article  CAS  PubMed  Google Scholar 

  106. Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, et al. The regulation of synaptic function by alpha-synuclein. Commun Integr Biol. 2010;3:106–9.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003;278:25009–13.

    Article  CAS  PubMed  Google Scholar 

  108. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305:1292–5.

    Article  CAS  PubMed  Google Scholar 

  109. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009;29:13578–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Narendra DP, ** SM, Tanaka A, Suen DF, Gautier CA, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Vives-Bauza C, Tocilescu M, Devries RL, Alessi DM, Jackson-Lewis V, et al. Control of mitochondrial integrity in Parkinson’s disease. Prog Brain Res. 2010;183:99–113.

    Article  CAS  PubMed  Google Scholar 

  112. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    Article  CAS  PubMed  Google Scholar 

  113. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Hatano T, Kubo S, Imai S, Maeda M, Ishikawa K, et al. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet. 2007;16:678–90.

    Article  CAS  PubMed  Google Scholar 

  115. Brice A. Genetics of Parkinson’s disease: LRRK2 on the rise. Brain. 2005;128:2760–2.

    Article  PubMed  Google Scholar 

  116. Cherra SJ, 3rd, Steer E, Gusdon AM, Kiselyov K, Chu CT. Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol. 2013;182:474–84.

    Google Scholar 

  117. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, et al. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet. 2011;20:40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Dagda RK, Das Banerjee T, Janda E. How Parkinsonian toxins dysregulate the autophagy machinery. Int J Mol Sci. 2013;14:22163–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Yoo MS, Kawamata H, Kim DJ, Chun HS, Son JH. Experimental strategy to identify genes susceptible to oxidative stress in nigral dopaminergic neurons. Neurochem Res. 2004;29:1223–34.

    Article  CAS  PubMed  Google Scholar 

  120. Choi KC, Kim SH, Ha JY, Kim ST, Son JH. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem. 2010;112:366–76.

    Article  CAS  PubMed  Google Scholar 

  121. Ha JY, Kim JS, Kang YH, Bok E, Kim YS, et al. Tnfaip8 l1/Oxi-beta binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson’s disease model. J Neurochem. 2014;129:527–38.

    Article  CAS  PubMed  Google Scholar 

  122. Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 2004;23:4307–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Sarkar S, Rubinsztein DC. Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J. 2008;275:4263–70.

    Article  CAS  PubMed  Google Scholar 

  124. Bursch W, Ellinger A. Autophagy-a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol. 2005;43:297–310.

    CAS  PubMed  Google Scholar 

  125. Santos RX, Cardoso S, Correia S, Carvalho C, Santos MS, et al. Targeting autophagy in the brain: a promising approach? Cent Nerv Syst Agents Med Chem. 2010;10:158–68.

    Article  CAS  PubMed  Google Scholar 

  126. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    Article  CAS  PubMed  Google Scholar 

  127. Martin DD, Heit RJ, Yap MC, Davidson MW, Hayden MR, et al. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin. Hum Mol Genet. 2014;23:3166–79.

    Article  CAS  PubMed  Google Scholar 

  128. Krainc D. Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases. Arch Neurol. 2010;67:388–92.

    Article  PubMed  Google Scholar 

  129. Rubinsztein DC, Ravikumar B, Acevedo-Arozena A, Imarisio S, O’Kane CJ, et al. Dyneins, autophagy, aggregation and neurodegeneration. Autophagy. 2005;1:177–8.

    Article  CAS  PubMed  Google Scholar 

  130. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 1001 Grant Project Number 110T405 and Sabanci University. D.G. is a recipient of the Turkish Academy of Sciences (TUBA) GEBIP Award and the EMBO Strategical Development and Installation Grant (EMBO-SDIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devrim Gozuacik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arachiche, A., Gozuacik, D. (2015). Regulation of Autophagy in Health and Disease. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_1

Download citation

Publish with us

Policies and ethics

Navigation