Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 32))

  • 653 Accesses

Abstract

The application of nanoparticles to enhanced oil recovery (EOR) especially at a laboratory scale has become a commonplace method. Given their small sizes, nanoparticles can easily disperse in the porous media and mix more easily with the reservoir fluids unlike conventional chemicals such as polymers and/or surfactants. The larger size of the chemicals increases their adsorption capability on the rock surfaces which results in an undesirable effect on their performance efficiencies and application. Nanoparticles during EOR processes can be used as nanofluids, nano-emulsions, nanoadsorbents or nanocatalysts. Nonetheless, in each recovery process, numerous mechanisms occur that can enormously reduce the trapped oil, which can extend the well productivity. Extensive research has been reported on the use of nanoparticles in EOR ranging from simple imbibition tests and core flood experiments to pilot plant applications. In this chapter, we reviewed some of the common types of nanoparticles evidenced for EOR application. We then addressed some of the stabilization techniques of the nanofluids before their dispersion as secondary and/or tertiary agents in hydrocarbon reservoirs and hence improve or enhance oil recovery. Lastly, we provide an overview of the operating parameters, mechanisms that govern nanoparticle performance during oil recovery, and an overview of the current environmental and economic concerns of using nanoparticles for improving oil recovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.W. Lake et al., Fundamentals of Enhanced Oil Recovery (2014

    Book  Google Scholar 

  2. R. Sen, Biotechnology in petroleum recovery: the microbial EOR. Prog. Energy Combust. Sci. 34(6), 714–724 (2008)

    Article  Google Scholar 

  3. N. Abas, A. Kalair, N. Khan. Review of fossil fuels and future energy technologies. Futures. 69, 31–49 (2015)

    Google Scholar 

  4. National Petroleum Council. Enhanced Oil Recovery – An Analysis of the Potential for Enhanced Oil Recovery from Known Fields in the United States–1976–2000 (Washington, DC, 1976)

    Google Scholar 

  5. Bilak, R., Enhanced oil recovery methods. 2006, Google Patents

    Google Scholar 

  6. S.A. Siddiqui, Enhanced oil recovery methods. Masters Abstracts International (2010)

    Google Scholar 

  7. V. Alvarado, E. Manrique, Enhanced oil recovery: an updated review. Energies 3(9), 1529–1575 (2010)

    Article  Google Scholar 

  8. A.A. Yousef, S. Al-Saleh, M.S. Al-Jawfi. Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content. in SPE Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2012)

    Google Scholar 

  9. S. Thomas, Enhanced oil recovery-an overview. Oil Gas Sci. Technol.-Revue de l’IFP 63(1), 9–19 (2008)

    Article  Google Scholar 

  10. G. Maggio, G. Cacciola, A variant of the Hubbert curve for world oil production forecasts. Energy Policy 37(11), 4761–4770 (2009)

    Article  Google Scholar 

  11. X. Kong, M. Ohadi. Applications of micro and nanotechnologies in the oil and gas industry-overview of the recent progress. in Abu Dhabi International Petroleum Exhibition and Conference (Society of Petroleum Engineers, 2010)

    Google Scholar 

  12. D.O. Shah, Improved Oil Recovery by Surfactant and Polymer Flooding (Elsevier, 2012)

    Google Scholar 

  13. A.A. Abe, Relative Permeability and Wettability Implications of Dilute Surfactants at Reservoir Conditions (2005)

    Google Scholar 

  14. W.R. Shu, K.J. Hartman, Thermal Recovery Method for Viscous Oil. 1986. Google Patents

    Google Scholar 

  15. O. Torsater et al. Improved oil recovery by nanofluids flooding: an experimental study. in SPE Kuwait International Petroleum Conference and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  16. L. Hendraningrat, S. Li, O. Torsæter, A coreflood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 111, 128–138 (2013)

    Article  Google Scholar 

  17. N. Ogolo, O. Olafuyi, M. Onyekonwu. Enhanced oil recovery using nanoparticles. in SPE Saudi Arabia Section Technical Symposium and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  18. P.M. McElfresh, D.L. Holcomb, D. Ector. Application of nanofluid technology to improve recovery in oil and gas wells. in SPE International Oilfield Nanotechnology Conference and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  19. J. Giraldo et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuel 27(7), 3659–3665 (2013)

    Article  Google Scholar 

  20. M. Khalil et al., Advanced nanomaterials in oil and gas industry: design, application and challenges. Appl. Energy 191, 287–310 (2017)

    Article  Google Scholar 

  21. W. Shen et al., Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)

    Article  Google Scholar 

  22. R. Mout et al., Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41(7), 2539–2544 (2012)

    Article  Google Scholar 

  23. R. Subbiah, M. Veerapandian, K.S. Yun, Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17(36), 4559–4577 (2010)

    Article  Google Scholar 

  24. J. Cheng et al., Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007)

    Article  Google Scholar 

  25. K. Yang et al., Multimodal imaging-guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24(14), 1868–1872 (2012)

    Article  Google Scholar 

  26. H. Chang, H. Wu, Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 6(12), 3483–3507 (2013)

    Article  Google Scholar 

  27. E. Serrano, G. Rus, J. Garcia-Martinez, Nanotechnology for sustainable energy. Renew. Sust. Energ. Rev. 13(9), 2373–2384 (2009)

    Article  Google Scholar 

  28. J.M. Perez, Iron oxide nanoparticles: Hidden talent. Nat. Nanotechnol. 2(9), 535–536 (2007)

    Article  Google Scholar 

  29. Y. Lei et al., Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328(5975), 224–228 (2010)

    Article  Google Scholar 

  30. C. Matteo et al., Current and future nanotech applications in the oil industry. Am. J. Appl. Sci. 9(6), 784 (2012)

    Article  Google Scholar 

  31. B. Suleimanov, F. Ismailov, E. Veliyev, Nanofluid for enhanced oil recovery. J. Pet. Sci. Eng. 78(2), 431–437 (2011)

    Article  Google Scholar 

  32. T. Zhang et al. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. in SPE Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2010)

    Google Scholar 

  33. P.L. Golas et al., Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 26(22), 16890–16900 (2010)

    Article  Google Scholar 

  34. P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58(4), 504 (2008)

    Article  Google Scholar 

  35. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013)

    Article  Google Scholar 

  36. C. Negin, S. Ali, Q. **e, Application of nanotechnology for enhancing oil recovery–a review. Petroleum 2(4), 324–333 (2016)

    Article  Google Scholar 

  37. L. Hendraningrat, S. Li, O. Torsater. Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: An experimental investigation. in SPE Reservoir Characterization and Simulation Conference and Exhibition (Society of Petroleum Engineers, 2013)

    Google Scholar 

  38. H. Ehtesabi et al., Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids. Energy Fuel 28(1), 423–430 (2013)

    Article  Google Scholar 

  39. D. Wasan, A. Nikolov, K. Kondiparty, The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr. Opin. Colloid Interface Sci. 16(4), 344–349 (2011)

    Article  Google Scholar 

  40. L. Hendraningrat, L. Shidong. A glass micromodel experimental study of hydrophilic nanoparticles retention for the EOR project. in SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  41. A. Esfandyari Bayat et al., Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy Fuel 28(10), 6255–6266 (2014)

    Article  Google Scholar 

  42. R. Hashemi, N.N. Nassar, P.P. Almao, Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 133, 374–387 (2014)

    Article  Google Scholar 

  43. J.G. Speight, The Chemistry and Technology of Petroleum (CRC Press, 2014)

    Google Scholar 

  44. O.C. Mullins, The asphaltenes. Annu. Rev. Anal. Chem. 4, 393–418 (2011)

    Article  Google Scholar 

  45. F.J. Pettijohn, P.E. Potter, R. Siever, Sand and Sandstone (Springer Science & Business Media, 2012)

    Google Scholar 

  46. P. Darling, SME Mining Engineering Handbook, vol. 1 (SME, 2011)

    Google Scholar 

  47. L. Wang et al., The study of thermal stability of the SiO2 powders with high specific surface area. Mater. Chem. Phys. 57(3), 260–263 (1999)

    Article  Google Scholar 

  48. C.R. Miranda, L.S.D. Lara, B.C. Tonetto. Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications. in SPE International Oilfield Nanotechnology Conference and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  49. H. Zhang, A. Nikolov, D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuel 28(5), 3002–3009 (2014)

    Article  Google Scholar 

  50. T. Sharma, S. Iglauer, J.S. Sangwai, Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Ind. Eng. Chem. Res. 55(48), 12387–12397 (2016)

    Article  Google Scholar 

  51. M. Zargartalebi, R. Kharrat, N. Barati, Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143, 21–27 (2015)

    Article  Google Scholar 

  52. N. Jain, Y. Wang, S.K. Jones, B.S. Hawkett, G.G. Warr, Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6), 4465–4472 (2009

    Google Scholar 

  53. J. Yu et al. Study of adsorption and transportation behaviour of nanoparticles in three different porous media. in SPE Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2012)

    Google Scholar 

  54. A. Roustaei et al. An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. in SPE International Oilfield Nanotechnology Conference and Exhibition (Society of Petroleum Engineers, 2012)

    Google Scholar 

  55. M.O. Onyekonwu, N.A. Ogolo. Investigating the use of nanoparticles in enhancing oil recovery. in Nigeria Annual International Conference and Exhibition (Society of Petroleum Engineers, 2010)

    Google Scholar 

  56. R. Nazari Moghaddam et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy Fuel 29(4), 2111–2119 (2015)

    Article  Google Scholar 

  57. H.M. Zaid et al. The effect of zinc oxide and aluminum oxide nanoparticles on interfacial tension and viscosity of nanofluids for enhanced oil recovery. in Advanced Materials Research (Trans Tech Publications, 2014)

    Google Scholar 

  58. L. Hendraningrat, O. Torsæter, Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosci. 5(2), 181–199 (2015)

    Article  Google Scholar 

  59. A.E. Bayat, R. Junin. Transportation of metal oxide nanoparticles through various porous media for enhanced oil recovery. in SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition (Society of Petroleum Engineers, 2015)

    Google Scholar 

  60. R. Zabala et al. Nano-technology for asphaltenes inhibition in Cupiagua South Wells. in IPTC 2014: International Petroleum Technology Conference (2014)

    Google Scholar 

  61. P. Mukherjee et al., Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1(10), 515–519 (2001)

    Article  Google Scholar 

  62. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006)

    Article  Google Scholar 

  63. N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuel 25(3), 1017–1023 (2011)

    Article  Google Scholar 

  64. N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25(4), 1566–1570 (2011)

    Article  Google Scholar 

  65. C.A. Franco et al., Adsorption and subsequent oxidation of Colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)

    Article  Google Scholar 

  66. S.I. Hashemi et al., On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix. Appl. Nanosci. 6(1), 71–81 (2016)

    Article  Google Scholar 

  67. S. Rellegadla et al., An effective approach for enhanced oil Recovery using nickel nanoparticles assisted polymer flooding. Energy Fuel 32(11), 11212–11221 (2018)

    Article  Google Scholar 

  68. J.B. Gardiner, Studies in the morphology and vulcanization of gum rubber blends. Rubber Chem. Technol. 43(2), 370–399 (1970)

    Article  Google Scholar 

  69. Y. Lin et al., Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Adv. 5(71), 57771–57780 (2015)

    Article  Google Scholar 

  70. V. Sousa et al., Combustion synthesized ZnO powders for varistor ceramics. Int. J. Inorg. Mater. 1(3–4), 235–241 (1999)

    Article  Google Scholar 

  71. O. Oprea et al., ZnO applications and challenges. Curr. Org. Chem. 18(2), 192–203 (2014)

    Article  MathSciNet  Google Scholar 

  72. A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185, 1–22 (2012)

    Article  Google Scholar 

  73. H. Soleimani et al., Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery. Appl. Phys. A 124(2), 128 (2018)

    Article  MathSciNet  Google Scholar 

  74. N.N. Nassar et al., Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012)

    Article  Google Scholar 

  75. R. Hashemi, N.N. Nassar, P. Pereira Almao, Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: a study of hot fluid flooding for Athabasca bitumen recovery. Energy Fuel 27(4), 2194–2201 (2013)

    Article  Google Scholar 

  76. N.N. Nassar, M.M. Husein, Ultradispersed particles in heavy oil: Part I, preparation and stabilization of iron oxide/hydroxide. Fuel Process. Technol. 91(2), 164–168 (2010)

    Article  Google Scholar 

  77. X. Li et al., Effect of nanoparticles on asphaltene aggregation in a micro-sized pore. Ind. Eng. Chem. Res. (2018)

    Google Scholar 

  78. E.A. Taborda et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuel 31(2), 1329–1338 (2017)

    Article  Google Scholar 

  79. Y. Kazemzadeh et al., Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil Recovery. Ind. Eng. Chem. Res. 54(1), 233–239 (2015)

    Article  MathSciNet  Google Scholar 

  80. N.N. Nassar, Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview, in Application of Adsorbents for Water Pollution Control, (Bentham Science Publishers, Oak Park, 2012), pp. 81–118

    Chapter  Google Scholar 

  81. L. Nwidee et al. Nanofluids for enhanced oil recovery processes: wettability alteration using zirconium oxide. in Offshore Technology Conference Asia (Offshore Technology Conference, 2016)

    Google Scholar 

  82. A. Karimi et al., Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuel 26(2), 1028–1036 (2012)

    Article  Google Scholar 

  83. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), 4363–4389

    Google Scholar 

  84. R. Gopalan, C.-H. Chang, Y. Lin, Thermal stability improvement on pore and phase structure of sol-gel derived zirconia. J. Mater. Sci. 30(12), 3075–3081 (1995)

    Article  Google Scholar 

  85. K. Tanabe, Surface and catalytic properties of ZrO2. Mater. Chem. Phys. 13(3–4), 347–364 (1985)

    Article  Google Scholar 

  86. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  87. G. Jo et al., The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11), 112001 (2012)

    Article  Google Scholar 

  88. M.D. Stoller et al., Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  Google Scholar 

  89. L.L. Zhang, R. Zhou, X. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010)

    Article  Google Scholar 

  90. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011)

    Article  Google Scholar 

  91. B.D. Nguyen et al., The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs. Adv. Nat. Sci. Nanosci. Nanotechnol. 6(1), 015012 (2014)

    Article  Google Scholar 

  92. D. Luo et al., Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: high performance at low concentration. Proc. Natl. Acad. Sci., 201608135 (2016)

    Google Scholar 

  93. A. Barrabino, T. Holt, E. Lindeberg, Graphene Oxide as Foam Stabilizing Agent for CO2 EOR (2018)

    Google Scholar 

  94. D.T. Wasan, A.D. Nikolov, Spreading of nanofluids on solids. Nature 423(6936), 156 (2003)

    Article  Google Scholar 

  95. M.S. Alnarabiji et al., The influence of hydrophobic multiwall carbon nanotubes concentration on enhanced oil recovery. Procedia Eng. 148, 1137–1140 (2016)

    Article  Google Scholar 

  96. B. Wei et al., The potential of a novel nanofluid in enhancing oil recovery. Energy Fuel 30(4), 2882–2891 (2016)

    Article  Google Scholar 

  97. R.C. Aadland et al., Identification of Nanocellulose Retention Characteristics in Porous Media (2018)

    Google Scholar 

  98. H. ShamsiJazeyi et al., Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15) (2014)

    Google Scholar 

  99. M. Ranka, P. Brown, T.A. Hatton, Responsive stabilization of nanoparticles for extreme salinity and high-temperature reservoir applications. ACS Appl. Mater. Interfaces 7(35), 19651–19658 (2015)

    Article  Google Scholar 

  100. A.-M. Sung, I. Piirma, Electrosteric stabilization of polymer colloids. Langmuir 10(5), 1393–1398 (1994)

    Article  Google Scholar 

  101. X. Wang, R.D. Tilley, J.J. Watkins, Simple ligand exchange reactions enabling excellent dispersibility and stability of magnetic nanoparticles in polar organic, aromatic, and protic solvents. Langmuir 30(6), 1514–1521 (2014)

    Article  Google Scholar 

  102. M.-A. Neouze, U. Schubert, Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chemie/Chemical Monthly 139(3), 183–195 (2008)

    Article  Google Scholar 

  103. N. Erathodiyil, J.Y. Ying, Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res. 44(10), 925–935 (2011)

    Article  Google Scholar 

  104. L. Nobs et al., Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93(8), 1980–1992 (2004)

    Article  Google Scholar 

  105. J.-C. Boyer et al., Surface modification of upconverting NaYF4 nanoparticles with PEG− phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26(2), 1157–1164 (2009)

    Article  Google Scholar 

  106. R. De Palma et al., Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 19(7), 1821–1831 (2007)

    Article  Google Scholar 

  107. M. Khalil et al., Non-aqueous modification of synthesized hematite nanoparticles with oleic acid. Colloids Surf. A Physicochem. Eng. Asp. 453, 7–12 (2014)

    Article  Google Scholar 

  108. R. Boissezon et al., Organophosphonates as anchoring agents onto metal oxide-based materials: synthesis and applications. RSC Adv. 4(67), 35690–35707 (2014)

    Article  Google Scholar 

  109. H.-C. Wu et al., Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 20(6), 1036–1052 (2010)

    Article  Google Scholar 

  110. C. Dai et al., Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores. Energy Fuel 31(3), 2663–2668 (2017)

    Article  Google Scholar 

  111. Y. Li et al., Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery. Energy Fuel 32(1), 287–293 (2017)

    Article  Google Scholar 

  112. J.R.. Baran Jr, O.J. Cabrera, Use of Surface-Modified Nanoparticles for Oil Recovery. 2006. Google Patents

    Google Scholar 

  113. F. Sagala et al., Nanopyroxene-based nanofluids for enhanced oil recovery in sandstone cores. Energy Fuel (2019)

    Google Scholar 

  114. F. Sagala et al., Nanopyroxene-based nanofluids for enhanced oil recovery in sandstone cores at reservoir temperature. Energy Fuel 33(2), 877–890 (2019)

    Article  Google Scholar 

  115. F. Sagala, A. Hethnawi, N.N. Nassar, Hydroxyl-functionalized silicate-based nanofluids for enhanced oil recovery. Fuel 269, 117462 (2020)

    Article  Google Scholar 

  116. S. Farad et al., Effect of wettability on oil recovery and breakthrough time for immiscible gas flooding. Pet. Sci. Technol. 34(20), 1705–1711 (2016)

    Article  Google Scholar 

  117. P. Pillai, A. Mandal, Wettability modification and adsorption characteristics of imidazole-based ionic liquid on carbonate rock: Implications for enhanced oil recovery. Energy Fuel (2019)

    Google Scholar 

  118. W. Anderson, Wettability literature survey–part 1 to part 6. J. Pet. Technol. 1986, 1125–1144 (1987)

    Google Scholar 

  119. M. Salehi, S.J. Johnson, J.-T. Liang, Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. Langmuir 24(24), 14099–14107 (2008)

    Article  Google Scholar 

  120. J. Yan, J. Monezes, M.M. Sharma, Wettability alteration caused by oil-based muds and mud components. SPE Drilling Complet. 8(01), 35–44 (1993)

    Article  Google Scholar 

  121. R.S. Al-Maamari, J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reserv. Eval. Eng. 6(04), 210–214 (2003)

    Article  Google Scholar 

  122. A. Munshi et al., Effect of nanoparticle size on sessile droplet contact angle. J. Appl. Phys. 103(8), 084315 (2008)

    Article  Google Scholar 

  123. S.W. Hasan, M.T. Ghannam, N. Esmail, Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 89(5), 1095–1100 (2010)

    Article  Google Scholar 

  124. G.A. Núñez et al., Flow characteristics of concentrated emulsions of very viscous oil in water. J. Rheol. 40(3), 405–423 (1996)

    Article  Google Scholar 

  125. M. Schumacher, Enhanced Recovery of Residual and Heavy Oils (Noyes Publications, 1980)

    Google Scholar 

  126. W. Li, J.-h. Zhu, J.-h. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. J. Fuel Chem. Technol. 35(2), 176–180 (2007)

    Article  Google Scholar 

  127. E.A. Taborda et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 184, 222–232 (2016)

    Article  Google Scholar 

  128. Y.H. Shokrlu, T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. J. Pet. Sci. Eng. 119, 210–220 (2014)

    Article  Google Scholar 

  129. F. Duan, D. Kwek, A. Crivoi, Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Res. Lett. 6(1), 248 (2011)

    Article  Google Scholar 

  130. D. Wever, F. Picchioni, A. Broekhuis, Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Prog. Polym. Sci. 36(11), 1558–1628 (2011)

    Article  Google Scholar 

  131. F. Wassmuth et al., Polymer flood application to improve heavy oil recovery at East Bodo. J. Can. Pet. Technol. 48(02), 55–61 (2009)

    Article  Google Scholar 

  132. L. Elias et al., Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20), 6029–6040 (2007)

    Article  Google Scholar 

  133. A. Maghzi et al., An experimental investigation of silica nanoparticles effect on the rheological behaviour of polyacrylamide solution to enhance heavy oil recovery. Pet. Sci. Technol. 31(5), 500–508 (2013)

    Article  Google Scholar 

  134. L.J. Giraldo et al., The effects of SiO2 nanoparticles on the thermal stability and rheological behaviour of hydrolyzed polyacrylamide based polymeric solutions. J. Pet. Sci. Eng. 159, 841–852 (2017)

    Article  Google Scholar 

  135. G. Cheraghian, S.S. Khalilinezhad, Effect of nanoclay on heavy oil recovery during polymer flooding. Pet. Sci. Technol. 33(9), 999–1007 (2015)

    Article  Google Scholar 

  136. Q. Sun et al., Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles. Energy Fuel 28(4), 2384–2394 (2014)

    Article  Google Scholar 

  137. F. Liu et al., Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. Pharm. Res. 13(11), 1642–1646 (1996)

    Article  Google Scholar 

  138. S. Friberg, P.O. Jansson, E. Cederberg, Surfactant association structure and emulsion stability. J. Colloid Interf. Sci. 55(3), 614–623 (1976)

    Article  Google Scholar 

  139. R.D. Shupe, J. Maddox Jr, Surfactant oil recovery process usable in high temperature, high salinity formations. 1978. Google Patents

    Google Scholar 

  140. C. Negin, S. Ali, Q. **e, Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3(2), 197–211 (2017)

    Article  Google Scholar 

  141. D. Wang et al., Synergistic effect of silica nanoparticles and Rhamnolipid on wettability alteration of low permeability sandstone rocks. Energy Fuel (2018)

    Google Scholar 

  142. J.P. Heller. CO2 Foams in Enhanced Oil Recovery (ACS Publications, 1994)

    Google Scholar 

  143. J. Yu, et al. Foam mobility control for nanoparticle-stabilized supercritical CO2 foam. in SPE improved oil recovery symposium (Society of Petroleum Engineers, 2012)

    Google Scholar 

  144. K. Kondiparty et al., Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Langmuir 27(7), 3324–3335 (2011)

    Article  Google Scholar 

  145. A. Chengara et al., Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interface Sci. 280(1), 192–201 (2004)

    Article  Google Scholar 

  146. D.A. Espinoza et al. Nanoparticle-stabilized supercritical CO2 foams for potential mobility control applications. in SPE Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2010)

    Google Scholar 

  147. M.A. Manan et al., Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil Recovery. Pet. Sci. Technol. 33(12), 1286–1294 (2015)

    Article  Google Scholar 

  148. S. Li et al., Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy Fuel 31(2), 1478–1488 (2017)

    Article  Google Scholar 

  149. W. Yang et al., Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil Recovery. Energy Fuel 31(5), 4721–4730 (2017)

    Article  Google Scholar 

  150. Y. Hurtado et al., Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs. Energy Fuel 32(5), 5824–5833 (2018)

    Article  Google Scholar 

  151. J. Pickering, Pickering emulsions. J. Chem. Soc (2001)

    Google Scholar 

  152. T. Sharma, G.S. Kumar, J.S. Sangwai, Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle–surfactant–polymer over surfactant–polymer (SP) flooding for enhanced oil recovery for Brownfield reservoir. J. Pet. Sci. Eng. 129, 221–232 (2015)

    Article  Google Scholar 

  153. T. Sharma et al., Use of oil-in-water Pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery. Pet. Sci. Technol. 33(17–18), 1595–1604 (2015)

    Article  Google Scholar 

  154. K.Y. Yoon et al., Core flooding of complex nanoscale colloidal dispersions for enhanced oil recovery by in situ formations of stable oil-in-water Pickering emulsions. Energy Fuel 30(4), 2628–2635 (2016)

    Article  Google Scholar 

  155. T. Montoya et al., A novel solid-liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”. Energy Fuel 28(8), 4963–4975 (2014)

    Article  Google Scholar 

  156. E. Rogel, C. Ovalles, M. Moir, Asphaltene stability in crude oils and petroleum materials by solubility profile analysis. Energy Fuel 24(8), 4369–4374 (2010)

    Article  Google Scholar 

  157. F. Adebiyi, V. Thoss, Spectroscopic characterization of asphaltene fraction of Nigerian Bitumen. Pet. Sci. Technol. 33(2), 245–255 (2015)

    Article  Google Scholar 

  158. J.C. Pereira et al., Resins: the molecules responsible for the stability/instability phenomena of asphaltenes. Energy Fuel 21(3), 1317–1321 (2007)

    Article  Google Scholar 

  159. H. Doryani, M.R. Malayeri, M. Riazi, Visualization of asphaltene precipitation and deposition in a uniformly patterned glass micromodel. Fuel 182, 613–622 (2016)

    Article  Google Scholar 

  160. S. Dubey, M. Waxman, Asphaltene adsorption and desorption from mineral surfaces. SPE Reserv. Eng. 6(03), 389–395 (1991)

    Article  Google Scholar 

  161. S. Kim, M. Boudh-Hir, G. Mansoori. The role of asphaltene in wettability reversal. in SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 1990)

    Google Scholar 

  162. J.J. Adams, Asphaltene adsorption, a literature review. Energy Fuel 28(5), 2831–2856 (2014)

    Article  Google Scholar 

  163. X. Yang, V.J. Verruto, P.K. Kilpatrick, Dynamic asphaltene− resin exchange at the oil/water interface: Time-dependent W/O emulsion stability for asphaltene/resin model oils. Energy Fuel 21(3), 1343–1349 (2007)

    Article  Google Scholar 

  164. L.C.R. Junior, M.S. Ferreira, A.C. da Silva Ramos, Inhibition of asphaltene precipitation in Brazilian crude oils using new oil-soluble amphiphiles. J. Pet. Sci. Eng. 51(1–2), 26–36 (2006)

    Article  Google Scholar 

  165. K.J. Leontaritis, G.A. Mansoori, Asphaltene deposition: a survey of field experiences and research approaches. J. Pet. Sci. Eng. 1(3), 229–239 (1988)

    Article  Google Scholar 

  166. Y.. Yin, A. Yen. Asphaltene deposition and chemical control in CO2 floods. in SPE/DOE Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2000)

    Google Scholar 

  167. S. Betancur et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Ind. Eng. Chem. Res. 55(21), 6122–6132 (2016)

    Article  Google Scholar 

  168. M. Mohammadi et al., Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids. Energy Fuel 25(7), 3150–3156 (2011)

    Article  Google Scholar 

  169. C.A. Franco et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy Fuel 27(6), 2899–2907 (2013)

    Article  Google Scholar 

  170. N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interf. Sci. 360(1), 233–238 (2011)

    Article  Google Scholar 

  171. H.P. Roenningsen et al., Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuel 5(6), 895–908 (1991)

    Article  Google Scholar 

  172. R. Edwards, Crystal habit of paraffin wax. Ind. Eng. Chem. 49(4), 750–757 (1957)

    Article  Google Scholar 

  173. F. Yang et al., Scaling of structural characteristics of gelled model waxy oils. Energy Fuel 27(7), 3718–3724 (2013)

    Article  Google Scholar 

  174. L. Wardhaugh, D. Boger, Flow characteristics of waxy crude oils: application to pipeline design. AICHE J. 37(6), 871–885 (1991)

    Article  Google Scholar 

  175. F. Yang et al., Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review. J. Dispers. Sci. Technol. 36(2), 213–225 (2015)

    Article  Google Scholar 

  176. F. Wang et al., The effect of nanohybrid materials on the pour-point and viscosity depressing of waxy crude oil. Chin. Sci. Bull. 56(1), 14–17 (2011)

    Article  Google Scholar 

  177. J. Norrman et al., Nanoparticles for waxy crudes: effect of polymer coverage and the effect on wax crystallization. Energy Fuel 30(6), 5108–5114 (2016)

    Article  Google Scholar 

  178. F. Yang et al., Hydrophilic nanoparticles facilitate wax inhibition. Energy Fuel 29(3), 1368–1374 (2015)

    Article  Google Scholar 

  179. E.O. Recovery, Using nanoparticle dispersions: Underlying mechanism and imbibition experiments Zhang, Hua; Nikolov, Alex; Wasan, Darsh. Energy Fuel 28(5), 3002–3009 (2014)

    Article  Google Scholar 

  180. A. Trokhymchuk et al., A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17(16), 4940–4947 (2001)

    Article  Google Scholar 

  181. H.C. Lau, M. Yu, Q.P. Nguyen, Nanotechnology for oilfield applications: Challenges and impact. J. Pet. Sci. Eng. 157, 1160–1169 (2017)

    Article  Google Scholar 

  182. 唐琛 张成亮, 杨振忠, Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization (2010)

    Google Scholar 

  183. C. Tang et al., Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization. Macromolecules 43(11), 5114–5120 (2010)

    Article  Google Scholar 

  184. C. Kaewsaneha et al., Preparation of Janus colloidal particles via Pickering emulsion: an overview. Colloids Surf. A Physicochem. Eng. Asp. 439, 35–42 (2013)

    Article  Google Scholar 

  185. M. Lattuada, T.A. Hatton, Synthesis, properties and applications of Janus nanoparticles. Nano Today 6(3), 286–308 (2011)

    Article  Google Scholar 

  186. S.-Y. Teh et al., Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  187. N.P. Pardhy, B.M. Budhlall, Pickering emulsion as a template to synthesize Janus colloids with anisotropy in the surface potential. Langmuir 26(16), 13130–13141 (2010)

    Article  Google Scholar 

  188. S.J.. Liang Hong, S. Granick, Simple method to produce Janus colloidal particles in large. Am. Chem. Soc., 5 (2006)

    Google Scholar 

  189. A. Böker et al., Self-assembly of nanoparticles at interfaces. Soft Matter 3(10), 1231–1248 (2007)

    Article  Google Scholar 

  190. R. Aveyard, J.H. Clint, T.S. Horozov, Aspects of the stabilisation of emulsions by solid particles: Effects of line tension and monolayer curvature energy. Phys. Chem. Chem. Phys. 5(11), 2398–2409 (2003)

    Article  Google Scholar 

  191. A. Perro et al., Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surf. A Physicochem. Eng. Asp. 332(1), 57–62 (2009)

    Article  Google Scholar 

  192. Z.B.Z. Shawon, Synthesis and characterization of Janus magnetic nanoparticles and its application as an adsorbent. J. Chem. Eng. 27(1), 64–68 (2013)

    Article  Google Scholar 

  193. D. Luo et al., Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration. Proc. Natl. Acad. Sci. U. S. A. 113(28), 7711–7716 (2016)

    Article  Google Scholar 

  194. H. Wu et al., Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 586, 124162 (2020)

    Article  Google Scholar 

  195. Y.V. Li, L.M. Cathles, L.A. Archer, Nanoparticle tracers in calcium carbonate porous media. J. Nanopart. Res. 16(8), 2541 (2014)

    Article  Google Scholar 

  196. T. Lu, Z. Li, Y. Zhou, Flow behavior and displacement mechanisms of nanoparticle stabilized foam flooding for enhanced heavy oil recovery. Energies 10(4), 560 (2017)

    Article  Google Scholar 

  197. T. Lu et al., Enhanced oil recovery of low-permeability cores by SiO2 nanofluid. Energy Fuel 31(5), 5612–5621 (2017)

    Article  Google Scholar 

  198. T. Sharma, G. Suresh Kumar, J.S. Sangwai, Enhanced oil recovery using oil-in-water (o/w) emulsion stabilized by nanoparticle, surfactant and polymer in the presence of NaCl. Geosyst. Eng. 17(3), 195–205 (2014)

    Article  Google Scholar 

  199. Y. Ding et al. Low salinity hot water injection with addition of nanoparticles for enhancing heavy oil recovery under reservoir conditions. in SPE Western Regional Meeting (Society of Petroleum Engineers, 2018)

    Google Scholar 

  200. L.P. Singh et al., Sol-gel processing of silica nanoparticles and their applications. Adv. Colloid Interf. Sci. 214, 17–37 (2014)

    Article  Google Scholar 

  201. I.A. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites — a review. J. Nanomater. 2012 (2012)

    Google Scholar 

  202. D.M. Kahan, D. Rejeski. Project on Emerging Nanotechnologies. 2009.

    Google Scholar 

  203. A. Nel et al., Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    Article  Google Scholar 

  204. Royal Society. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (Royal Society, 2004)

    Google Scholar 

  205. K.W. Powers et al., Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90(2), 296–303 (2006)

    Article  Google Scholar 

  206. K. Mattsson et al., Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 7(1), 11452 (2017)

    Article  Google Scholar 

  207. R. Purohit et al., Social, environmental and ethical impacts of nanotechnology. Mater. Today Proc. 4(4), 5461–5467 (2017)

    Article  Google Scholar 

  208. N. Yekeen et al., A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. J. Pet. Sci. Eng. 164, 43–74 (2018)

    Article  Google Scholar 

  209. S.K. Choi et al., Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles. Energy Fuel 31(8), 7777–7782 (2017)

    Article  Google Scholar 

  210. L. Hendraningrat, O. Torsæter, Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures. Energy Fuel 28(10), 6228–6241 (2014)

    Article  Google Scholar 

  211. M.I. Youssif et al., Silica nanofluid flooding for enhanced oil recovery in sandstone rocks. Egypt. J. Petrol. (2017)

    Google Scholar 

  212. S. Al-Anssari et al., Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci. 461, 435–442 (2016)

    Article  Google Scholar 

  213. E.A. Taborda et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuel 31(2), 1329–1338 (2017)

    Article  Google Scholar 

  214. H. Soleimani et al., Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 9, 39–48 (2018)

    Article  Google Scholar 

  215. S.N. Molnes et al., Investigation of a new application for cellulose nanocrystals: a study of the enhanced oil recovery potential by use of a green additive. Cellulose 25(4), 2289–2301 (2018)

    Article  Google Scholar 

  216. E. Joonaki, S. Ghanaatian, The application of nanofluids for enhanced oil recovery: Effects on interfacial tension and coreflooding process. Pet. Sci. Technol. 32(21), 2599–2607 (2014)

    Article  Google Scholar 

  217. R. Singh, K.K. Mohanty, Foams stabilized by in-situ surface-activated nanoparticles in bulk and porous media. SPE J. 21(01), 121–130 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support. The first author acknowledges the Islamic Development Bank in Jeddah, Saudi Arabia, for the financial support through his PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashaat N. Nassar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagala, F., Hethnawi, A., Kajjumba, G.W., Nassar, N.N. (2021). Nanoparticles as Potential Agents for Enhanced Oil Recovery. In: Nassar, N.N., Cortés, F.B., Franco, C.A. (eds) Nanoparticles: An Emerging Technology for Oil Production and Processing Applications. Lecture Notes in Nanoscale Science and Technology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-12051-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12051-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12050-8

  • Online ISBN: 978-3-319-12051-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation