A Review on the Dynamic Decision Models for Manufacturing and Supply Chain

  • Chapter
  • First Online:
Decision Models in Engineering and Management

Part of the book series: Decision Engineering ((DECENGIN))

Abstract

Manufacturing sites are primarily dynamic, that is, production plans and schedules are usually affected by disturbances and environmental changes. On the other hand, the decision analysis models for engineering management must aim to represent reality with accuracy. Thus, the study of the dynamic models in the engineering management field is paramount. In this chapter, dynamic decision models for manufacturing and supply chain are discussed. First, an overall review of the deterministic dynamic models based on control theory and state representation is presented. After that, a set of models specifically applied to scheduling and production control is discussed in detail. A comparative analysis of these models is also presented, followed by some directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrell PJ, Wikner J (1996) An MCDM framework for dynamic systems. Int J Prod Econ 45:279–292

    Article  Google Scholar 

  • Åström KJ, Kumar PR (2014) Control: a perspective. Automatica 50(1):3–43

    Article  MathSciNet  MATH  Google Scholar 

  • Axsäter S (1976) Coordinating control of production-inventory systems. Int J Prod Res 14(6):669–688

    Article  Google Scholar 

  • Axsäter S (1985) Control theory concepts in production and inventory control. Int J Syst Sci 16(2):161–169

    Article  MATH  Google Scholar 

  • Axsäter S (1990) Simple solution procedures for a class of two-echelon inventory problems. Oper Res 38:64–69

    Article  MATH  Google Scholar 

  • Axsäter S (2001) Scaling down multi-echelon inventory problems. Int J Prod Econ 71(1–3):255–261. doi:10.1016/S0925-5273(00)00123-7

    Article  Google Scholar 

  • Axsäter S (2003) Approximate optimization of a two-level distribution inventory system. Int J Prod Econ 81–82:545–553. doi:10.1016/S0925-5273(02)00270-0

    Article  Google Scholar 

  • Axsäter S, Olsson F, Tydesjo P (2007) Heuristics for handling direct upstream demand in two-echelon distribution inventory systems. Int J Prod Econ 108(1–2):266–270. doi:10.1016/j.ijpe.2006.12.014

    Article  Google Scholar 

  • Benmansour S, benabdelhafid A, Boudebous D, Boukachour J (2004) Bond graph for robust modelling of manufacturing systems. In: Proceedings of international conference on computational cybernetics, IEEE ICCC ‘04, Vienna, Aug 30–Sep 01 2004. IEEE, New Jersey, pp 291–295

    Google Scholar 

  • Bertrand JWM, Fransoo JC (2002) Operations management research methodologies using quantitative modeling. Int J Oper Prod Manag 22(2):241–264

    Article  Google Scholar 

  • Besombes B, Marcon E (1993) Bond-graphs for modelling of manufacturing systems. In: Proceedings of IEEE international conference on systems, man and cybernetics, Le Touquet. IEEE, New Jersey, pp 256–261

    Google Scholar 

  • Bogataj L, Horvat L (1996) Stochastic considerations of Grubbström-Molinder model of MRP, input-output and multi-echelon inventory systems. Int J Prod Econ 45(1):329–336

    Article  Google Scholar 

  • Burns JF, Sivazlian BD (1978) Dynamic analysis of multi-echelon supply systems. Comput Ind Eng 2:181–193

    Article  Google Scholar 

  • Cho S, Erkoc M (2009) Design of predictable production scheduling model using control theoretic approach. Int J Prod Res 47(11):2975–2993

    Article  MATH  Google Scholar 

  • Cho S, Lazaro A (2010) Control theoretic model using PID controller for just-in-time production scheduling. Int J Adv Manuf Technol 51(5–8):699–709

    Article  Google Scholar 

  • Cho S, Prabhu VV (2007) Distributed adaptive control of production scheduling and machine capacity. J Manuf Syst 26:65–74

    Article  Google Scholar 

  • Christensen JL, Brogan WL (1971) Modeling and optimal control of production processes. Int J Syst Sci 1:247–255

    Article  MATH  Google Scholar 

  • Davis WJ, Thompson SD (1993) Production planning and control hierarchy using a generic controller. IIE Trans 25:26–45

    Article  Google Scholar 

  • Dejonckheere J, Disney SM, Lambrecht MR, Towill DR (2002) Transfer function analysis of forecasting induced bullwhip in supply chains. Int J Prod Econ 78(2):133–144

    Article  Google Scholar 

  • Dejonckheere J, Disney SM, Lambrecht MR, Towill DR (2003) Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur J Oper Res 147(3):567–590

    Article  MATH  Google Scholar 

  • Dembélé S, Lhote F (1993) Proposition of manufacturing systems modelling by bond-graphs. In: Proceedings of international conference on systems, man and cybernetics, ‘Systems Engineering in the Service of Humans’, Le Touquet, 17–20 Oct 1993. IEEE New Jersey pp 262–267

    Google Scholar 

  • Disney SM, Towill DR (2002) A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. Int J Prod Res 40(1):179–204

    Article  MATH  Google Scholar 

  • Disney SM, Naim MM, Towill DR (2000) Genetic algorithm optimization of a class of inventory control systems. Int J Prod Econ 68(3):259–278

    Article  Google Scholar 

  • Edghill J, Towill DR (1990) Assessing manufacturing system performance: frequency response revisited. Eng Costs Prod Econ 19:319–326

    Article  Google Scholar 

  • Evans GN, Naim MM, Towill DR (1998) Application of a simulation methodology to the redesign of a logistical control system. Int J Prod Econ 56–57(1):157–168

    Article  Google Scholar 

  • Ferney M (2000) Modelling and Controlling product manufacturing systems using bond-graphs and state equations: continuous systems and discrete systems which can be represented by continuous models. Prod Plan Control 11(1):7–19

    Article  Google Scholar 

  • Forrester JW (1958) Industrial dynamics: a major breakthrough for decision makers. Harvard Bus Rev 36:37–66

    Google Scholar 

  • Forrester JW (1961) Industrial dynamics. MIT Press, Cambridge

    Google Scholar 

  • Grubbström RW (2005) Algorithms for optimal dynamic lotsizing in discrete and continuous time. Int J Agile Manuf 8(2):85–96

    Google Scholar 

  • Grubbström RW, Lundquist J (1977) The Axsäter integrated production–inventory system interpreted in terms of the theory of relatively closed systems. J Cybern 7:49–67

    Article  MATH  Google Scholar 

  • Grubbström RW, Molinder A (1994) Further theoretical considerations on the relationship between MRP, input–output analysis and multi-echelon inventory system. Int J Prod Econ 35(1):299–311

    Article  Google Scholar 

  • Grubbström RW, Molinder A (1996) Safety production plans in MRP-systems using transform methodology. Int J Prod Econ 46–47(1):297–309

    Article  Google Scholar 

  • Grubbström RW, Ovrin P (1992) Intertemporal generalization of the relationship between material requirements planning and input–output analysis. Int J Prod Econ 26(1–3):311–318

    Article  Google Scholar 

  • Grubbström RW, Tang O (1999) Further developments on safety stocks in an MRP system applying laplace transforms and input–output methodology. Int J Prod Econ 60–61:381–387

    Article  Google Scholar 

  • Grubbström RW, Tang O (2000) An overview of input–output analysis applied to production-inventory systems. Econ Syst Rev 12(1):3–25

    Article  Google Scholar 

  • Grubbström RW, Wang Z (2003) A stochastic model of multi-level/multi-stage capacity-constrained production–inventory systems. Int J Prod Eco 81–82:483–494

    Google Scholar 

  • Grubbström RW, Bogataj M, Bogataj L (2010) Optimal lotsizing within MRP Theory. Annu Rev Control 34(1):89–100

    Article  Google Scholar 

  • Haffaf H, Kamel RM (2001) Bond-graph for Information Systems. Int J Gen Syst 30(4):441–462

    Article  MATH  Google Scholar 

  • Hennet J-C (2003) Bi-modal scheme for multi-stage production and inventory control. Automatica 39:793–805

    Article  MathSciNet  MATH  Google Scholar 

  • Hennet J-C (2009) A Globally optimal local inventory control policy for multistage supply chains. Int J Prod Res Spec Issue 47(2):435–453 (Cutting edge of the French community in production research)

    Google Scholar 

  • John S, Naim MM, Towill DR (1994) Dynamic analysis of a WIP compensated decision support system. Int J Manuf Syst Des 1(4):283–297

    Google Scholar 

  • Karnopp DC, Rosenberg RC (1968) Analysis and simulation of multiport systems. M.I.T. Press, Massachusetts

    Google Scholar 

  • Lalwani CS, Disney SM, Towill DR (2006) Controllable, observable and state space representations of a generalized order-up-to policy. Int J Prod Econ 101:172–184

    Article  Google Scholar 

  • Li W, Luo X, Xue D, Tu Y (2011) A heuristic for adaptive production scheduling and control in flow shop production. Int J Prod Res 49(11):3151–3170

    Article  Google Scholar 

  • Little JDC (1961) A proof for the queuing formula L = λW. Oper Res 9:383–387

    Article  MathSciNet  MATH  Google Scholar 

  • Nyhuis P (1994) Logistic operating curves—a comprehensive method of rating logistic potentials, EURO XIII/OR36. University of Strathclyde Glasgow, 19–22 July 1994

    Google Scholar 

  • Nyhuis P, Wiendahl H-P (2006) Logistic production operating curves – basic model of the theory of logistic operating curves. CIRP Annals—Manuf Technol 55(1):441–444

    Article  Google Scholar 

  • Ortega M, Lin L (2004) Control theory applications to the production-inventory problem: a review. Int J Prod Res 42(11):2303–2322

    Article  MATH  Google Scholar 

  • Popplewell K, Bonney MC (1987) The application of discrete linear control theory to the analysis and simulation of multi-product, multi-level production control systems. Int J Prod Res 25:45–56

    Article  Google Scholar 

  • Porter B, Bradshaw A (1974) Modal control of production–inventory systems using piecewise-constant control policies. Int J Syst Sci 5:733–742

    Article  MathSciNet  MATH  Google Scholar 

  • Prabhu VV, Duffie NA (1999) Nonlinear dynamics in distributed arrival time control of heterarchical manufacturing systems. IEEE Trans Control Syst Technol 1(6):724–730

    Article  Google Scholar 

  • Sader BH, Sorensen CD (2003) Deterministic and stochastic dynamic modeling of continuous manufacturing systems using analogies to electrical systems. In: Chick S, Sánchez PJ, Ferrin D, Morrice DJ (eds) Winter simulation conference; 7–10 Dec 2003. IEEE, New Jersey, pp 1134–1142

    Google Scholar 

  • Sarimveis H, Patrinos P, Tarantilis C, Kiranoudis CT (2008) Dynamic modeling and control of supply chain systems: a review. Comput Oper Res 35(11):3530–3561

    Article  MATH  Google Scholar 

  • Scarf H (1960) The optimality of (S, s) policies in the dynamic inventory problem. In: Arrow K, Karlin S, Suppes P (eds) Mathematical methods in the social sciences, Stanford University Press, Stanford, pp 196–202

    Google Scholar 

  • Simon HA (1952) On the application of servomechanism theory in the study of production control. Econometrica 20:247–268

    Article  MathSciNet  MATH  Google Scholar 

  • Suri R, Desiraju R (1997) Performance analysis of flexible manufacturing systems with a single discrete material-handling device. Int J Flex Manuf Syst 9(3):223–249

    Article  Google Scholar 

  • Towill DR (1982) Dynamic analysis of an inventory and order based production control system. Int J Prod Res 20(6):671–687

    Article  Google Scholar 

  • Towill DR, Evans GN, Cheema P (1997) Analysis and design of an adaptive minimum reasonable inventory control system. Prod Plan Control 8:545–557

    Article  Google Scholar 

  • Vassian JH (1955) Application of discrete variable servo theory to inventory control. Oper Res 3(3):272–282

    Google Scholar 

  • Wang X, Liu Z, Zheng C, Wu J (2008) Analysis and design of a production and inventory control system for ramp demand. In: Proceedings of WiCOM ‘08—4th international conference on wireless communications, networking and mobile computing, Dalian, IEEE, New Jersey, pp 1–5

    Google Scholar 

  • White AS (1999) Management of inventory using control theory. Int J Technol Manage 17:847–860

    Article  Google Scholar 

  • Wiendahl H-P (1995) Load-orientated manufacturing control. Springer, New York

    Book  Google Scholar 

  • Wiendahl H-P, Breithaupt J-W (1997) Production planning and control on the basis of control theory. In: Okino N, Tamura H, Fujii S (eds) Advances in production management systems—perspectives and future challenges. Chapman & Hall, London, pp 351–362

    Google Scholar 

  • Wiendahl H-P, Breithaupt J-W (1999) Modelling and controlling the dynamics of production systems. Production Planning and Control. 10(4):389–401

    Article  Google Scholar 

  • Wiendahl H-P, Breithaupt J-W (2000) Automatic production control applying control theory. Int J Prod Econ 63(1):33–46

    Article  Google Scholar 

  • Wikner J, Towill DR, Naim MM (1991) Smoothing supply chain dynamics. Int J Prod Econ 22:231–248

    Article  Google Scholar 

  • Wikner J, Naim MM, Towill DR (1992) The system simplification approach in understanding the dynamic behaviour of a manufacturing supply chain. J Syst Eng 2:167–178

    Google Scholar 

  • Zhou L, Grubbström RW (2004) Analysis of the effect of commonality in multi-level inventory systems applying MRP theory. Int J Prod Econ 90:251–263

    Article  Google Scholar 

  • Zhou L, Disney S, Towill DR (2010) A pragmatic approach to the design of bullwhip controllers. Int J Prod Econ 128(2):556–568

    Article  Google Scholar 

  • Zhou L, Naim MM, Tang O, Towill DR (2006) Dynamic performance of a hybrid inventory system with a Kanban policy in remanufacturing process. Omega 34:585–598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Keiko Sagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sagawa, J.K., Nagano, M.S. (2015). A Review on the Dynamic Decision Models for Manufacturing and Supply Chain. In: Guarnieri, P. (eds) Decision Models in Engineering and Management. Decision Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11949-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11949-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11948-9

  • Online ISBN: 978-3-319-11949-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation