Biosafety Risk of Genetically Modified Crops Containing Cry Genes

  • Chapter
  • First Online:
CO2 Sequestration, Biofuels and Depollution

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 5))

  • 1774 Accesses

Abstract

Genomic technologies started in the early 1980s to improve the genomes of cultivated crop species. For example the term “Bt” comes from the soil bacterium Bacillus thuringiensis containing genes, e.g. Cry1Ac, Cry2Ab, Cry1F, Cry3Bb1, that provides protection against lepidopteran insect pests. Those genes have been inserted in crops such as corn, cotton, soybean, rice, potato and canola released for cultivation in mid 1990s in USA, and later in many other countries like China and India. About 29 countries commercialized genetically-modified (GM) or ‘transgenic’ crops while 30 countries granted regulatory approvals for planting GM-crops; together making 75 % of the world population. Potential harmful effects of the Bt-crops on non-targets were quantified before releasing such non-conventional crops into the environment. The cultivation of Bt-crops were most commonly found safe, based on various studies including the insertional impact of transgene and its regulatory elements on plant phenotype and agronomic performance, effect on non-target organisms (NTOs) and nutritional impacts on multiple experimental models. Albeit the studies were conducted for limited durations. However, the skeptics always claim for conducting extensive clinical as well as field trials, and also doubt on methods and procedures of calculating the ecological risks. This debate is still on-going, especially after reports on substantial reduction of monarch butterfly caterpillars exposed to Bt-maize pollen, though later nullified; and detection of traces of transgene in various tissues of experimental animals. Procedures, methods and protocols for evaluating potential risks of GM-crops and foods should be standardized as the first step to build trust of researchers and end-users. Many efforts should be exerted in deploying genes of interest, marker genes and regulatory sequences invoking no or little issues of potential risks to the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GM:

Genetically modified

GE:

Genetically engineered

Bt:

Bacillus thuringiensis

NTOs:

Non-target organisms

PIPs:

Plant-incorporated protectants

CaMV35 S:

Cauliflower mosaic virus 35 S promoter

GFP gene:

Green fluorescent protein gene

nptII gene:

Neomycin phosphotransferase gene

IgE:

Immunoglobulin E

IgG:

Immunoglobulin G

ELISA:

Enzyme-linked immunosorbent assay

PCR:

Polymerase chain reaction

MBC:

Biomass carbon

MBN:

Biomass nitrogen

References

  • Adams NR (1995) Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci 73:1509–1515

    CAS  Google Scholar 

  • Alinorm (2003) Joint FAO/WHO Food Standard Programme CAC: Appendix III: Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants; Appendix IV: Annex on the assessment of possible allergenicity

    Google Scholar 

  • Anderson K, Valenzuela E, Jackson LA (2008) Recent and prospective adoption of genetically modified cotton: a global computable general equilibrium analysis of economic impacts. Econ Dev Cult Change 56:265–296

    Google Scholar 

  • Arif MI, Rafiq M, Ghaffar A (2009) Host plants of cotton mealybug (Phenacoccus solenopsis): a new menace to cotton agroecosystem of Punjab. Int J Agric Biol 11:163–167

    Google Scholar 

  • Bakke-McKellep AM, Koppang EO, Gunnes G, Senden M, Hemre GI, Landsverk T, Krogdahl A (2007) Histological, digestive, metabolic, hormonal and some immune factor responses in Atlantic salmon, Salmo salar L, fed genetically modified soybeans. J Fish Dis 30:65–79

    CAS  Google Scholar 

  • Bannon G, Fu TJ, Kimber I, Hinton DM (2003) Protein digestibility and relevance to allergenicity. Environ Health Persp 111:1122–1124

    CAS  Google Scholar 

  • Barriere Y, Verite R, Brunschwig P, Surault F, Emile JC (2001) Feeding value of corn silage estimated with sheep and dairy cows is not altered by genetic incorporation of Bt1376 resistance to Ostrinia nubilalis. J Dairy Sci 84:1863–1871

    CAS  Google Scholar 

  • Bashir K, Husnain T, Fatima T, Latif Z, Mehdi SA, Riazuddin S (2004a) Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breeding 13(4):301–312

    CAS  Google Scholar 

  • Bashir K, Husnain T, Riazuddin S (2004b) Response of transgenic rice expressing two Bt genes to nontarget insects. Int Rice Res Notes 29(2):15–16

    Google Scholar 

  • Bashir K, Husnain T, Fatima T, Riaz N, Makhdoom R, Riazuddin S (2005) Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus Thuringiensis is highly resistant to two lepidopteron insects in the field. Crop Prot 24:870–879

    CAS  Google Scholar 

  • Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and step** stones. Ecology 85:2672–2675

    Google Scholar 

  • Becker HC, Karle R, Han SS (1992) Environmental variation for outcrossing rates in rapeseed (Brassica napus). Theor Appl Genet 84:303–306

    CAS  Google Scholar 

  • Beever DE, Kemp F (2000) Safety issues associated with the DNA in animal feed derived from genetically modified crops. A review of scientific and regulatory procedures. Nutr Revs 70:197–204

    Google Scholar 

  • Berliner E (1915) Uber die Schalffsuchi der Mehlmottenraupo und thren Erreger, Bacillus thuringiensis n. sp. Zeitschfit fur Angewandte Entomologie 2:29–56

    Google Scholar 

  • Bernstein JA, Bernstein IL, Bucchini L, Goldman LR, Hamilton RG, Lehrer S, Rubin C (2003) Clinical and laboratory investigation of allergy to genetically modified foods. Environ Health Persp 111:1114–1121

    CAS  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150:375–384

    CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis cry and cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    CAS  Google Scholar 

  • Bt Insect Resistant Technology (2011) http://www.isaaa.org/resources/publications/pocketk/6/default.asp

  • Campbell DR (1985) Pollen and gene dispersal: the influences of competition for pollination. Evolution 39:418–431

    Google Scholar 

  • Chen M, Ye GY, Yao HW, Hu C, Shu QY (2003) Impact evaluation of insect-resistant transgenic rice on the feeding and oviposition behavior of its non-target insect, the brown planthopper, Nilaparvata lugens (Homptera: Delphacidae). Agric Sci China 2:1000–1006

    Google Scholar 

  • Chen M, Ye GY, Liu ZC, Yao HW, Chen XX, Shen ZC, Hu C, Datta SK (2006) Field assessment of the effects of transgenic rice expressing a fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis Berliner on Nontarget Planthopper and Leafhopper Populations. Environ Entomol 35(1):127–134

    Google Scholar 

  • Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y (2003) Detection of corn intrinsic and recombinant DNA fragments Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci 81:2546–2551

    CAS  Google Scholar 

  • Coghlan A (2000) So far so good: for the moment, the gene genie is staying in its bottle. New

    Google Scholar 

  • Conner AJ, Jacobs JME (1999) Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat Res 443:223–234

    CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment: part II overview of ecological risk assessment. Plant J 33:19–46

    Google Scholar 

  • Crost B, Shankar B, Bennett R, Morse S (2007) Bias from farmer self-selection in genetically modified crop productivity estimates: evidence from Indian data. J Agric Econ 58:24–36

    Google Scholar 

  • de Janvry A, Sadoulet E (2002) World poverty and the role of agricultural technology: direct and indirect effects. J Dev Studies 38:1–26

    Google Scholar 

  • de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613

    Google Scholar 

  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria pseudomonas stutzeri and acinetobacter sp by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215

    Google Scholar 

  • De Schrijver A, Devos Y, van den Bulcke M, Cadot P, De Loose M, Reheul D, Sneyers M (2007) Risk assessment of GM stacked events obtained from crosses between GM events. Trends Food Sci Tech 18:101–109

    Google Scholar 

  • Dev SM, Rao NC (2007) Socioeconomic impact of Bt cotton. CESS Monographs 3, Centre for Economic and Social Studies. Hyderabad

    Google Scholar 

  • Dillehay BL, Roth GW, Calvin DD, Kratochvil RJ, Kuldau GA, Hyde JA (2004) Performance of Bt corn hybrids, their near isolines, and leading corn hybrids in Pennsylvania and Maryland. Agron J 96:818–824

    Google Scholar 

  • Dively GP, Rose R, Sears MK, Hellmich RL, Stanley-Horn DE, Calvin D, Russo JM, Anderson PL (2004) Effects on monarch butterfly larvae (Lepidoptera Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environ Entomol 33:1116–1125

    CAS  Google Scholar 

  • Dona A, Arvanitoyannis IS (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49:164–175

    CAS  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var kurstaki endotoxin. Appl Soil Ecol 2:111–124

    Google Scholar 

  • Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var tenebrionis endotoxin. Transgenic Res 5:25–35

    CAS  Google Scholar 

  • Donkin SS, Velez JC, Totten AK, Stanisiewski EP, Hartnell GF (2003) Effects of feeding silage and grain from glyphosate-tolerant or insect-protected corn hybrids on feed intake, ruminal digestion, and milk production in dairy cattle. J Dairy Sci 86:1780–1788

    CAS  Google Scholar 

  • Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwaegle F, Jahreis G, Flachowsky G (2001) The fate of forage plant DNA in farm animals, a collaborative case-study investigating cattle and chicken fed recombinant plant material. Eur Food Res Technol 212:129–134

    CAS  Google Scholar 

  • Elbehri A, Macdonald S (2004) Estimating the impact of transgenic Bt cotton on west and central Africa: a general equilibrium approach. World Dev 32:2049–2064

    Google Scholar 

  • Ellis C, Karafyllidis L, Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15:1025–1030

    CAS  Google Scholar 

  • Extension Toxicology Network (1996) Pesticide information profile, Bacillus thuringiensis. Accessed 23 August 2012.

    Google Scholar 

  • FAO (2004) The state of food and agriculture 2003–2004; agricultural biotechnology: meeting the needs of the poor? FAO Agriculture Series No. 35. Rome

    Google Scholar 

  • FAO/WHO (2001) Evaluation of allergenicity of genetically modified foods report of a joint FAO/WHO expert consultation on foods derived from biotechnology, 22–15 January 2001, Rome Italy available: food and agriculture organisation of the United Nations, Rome. http://www.fao.org/es/esn/allergygm.pdf

  • Fares NH, El-Sayed AK (1998) Fine structural changes in the ileum of mice fed on delta-endotoxin-treated potatoes and transgenic potatoes. Nat Toxins 6:219–233

    CAS  Google Scholar 

  • Federici B (2002) Case study: Bt crops. In: Atherton K (Ed) Genetically modified crops: assessing safety (chapter 8). Taylor & Francis, New York

    Google Scholar 

  • Fitt GP, Mares CL, Llewellyn DJ (1994) Field evaluation and potential ecological impact of transgenic cotton (Gossypium hirsutum) in Australia. Biocontrol Sci Tech 4:535–548

    Google Scholar 

  • Flachowsky G, Chesson A, Aulrich K (2005) Animal nutrition with feeds from genetically modified plants. Arch Anim Nutr 59:1–40

    Google Scholar 

  • Framond AJ, Bevan MW, Barton KA, Flavell F, Chilton MD (1983) Mini-Ti plasmid and a chimeric gene construct: new approaches to plant gene vector construction. Advances in gene technology: molecular genetics of plants and animals. Miami Winter Symposia 20:159–170

    Google Scholar 

  • Gallagher S, Grimes J, Beavers JB (2000) Insect protection protein 2 in cottonseed meal, a dietary toxicity study with the northern Bobwhite. Report No MSL-1678, Monsanto Company, St Louis

    Google Scholar 

  • Gandhi VP, Namboodiri NV (2006) The adoption and economics of Bt cotton in India: preliminary results from a study Work Pap 2006–09-04, Indian Inst Manag

    Google Scholar 

  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554

    CAS  Google Scholar 

  • Germolec DR, Kimber I, Goldman L, Selgrade M (2003) Key issues for the assessment of the allergenic potential of genetically modified foods: breakout group reports. Environ Health Persp 11:1131–1139

    Google Scholar 

  • Gupta VVSR, Roberts GN, Neate SM, McClure SG, Crisp P, Watson SK (2002) Impact of Bt-cotton on biological processes in Australian soils. In: Akhurst RJ, Beard CE, Hughes PA (Eds) Proceedings of the fourth pacific rim conference on the biotechnology of bacillus thuringiensis and its environmental impacts. CSIRO, Australia, pp. 191–194

    Google Scholar 

  • Halford NG, Shewry PR (2000) Genetically modified crops: methodology, benefits, regulation and public concerns. Brit Med Bullet 56:71

    Google Scholar 

  • Head G, Surber JB, Watson JA, Martin JW, Duan JJ (2002) No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ Entomol 31:30–36

    CAS  Google Scholar 

  • Hellmich RL, Hellmich KA (2012) Use and impact of Bt maize. Nat Edu Knowledge 3(5):4

    Google Scholar 

  • Hellmich RL, Siegfried BD, Sears MK, Stanley-Horn DE, Mattila HR, Spencer T, Bidne KG, Daniels MJ, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc Natl Acad Sci USA 98:11925–11930

    CAS  Google Scholar 

  • Hilbeck A, Andow DA, Fontes EMG (2006) Environmental risk assessment of genetically modified organisms Volume 2: Methodologies for Assessing Bt Cotton in Brazil. CABI Publishing, Wallingford, ISBN-10: 1-84593-000-2, ISBN-13: 978-1-84593-000-4

    Google Scholar 

  • Hill RH, Caudill SP, Philen RM, Bailey SL, Flanders WD, Driskell WJ (1993) Contaminants in L-tryptophan associated with eosinophilia myalgia syndrome. Arch Environ Contam Toxicol 25:134–142

    CAS  Google Scholar 

  • History of Bt http://www.bt.ucsd.edu/bt_history.html

  • Ho MW, Ryan A, Cummins J (2000) Hazards of transgenic plants containing the cauliflower mosaic virus promoter. Microb Ecol Health Dis 12(3):189–198

    CAS  Google Scholar 

  • Hodgson J (2000) Scientists avert new GMO crisis. Nat Biotechnol 18:13

    CAS  Google Scholar 

  • Hohlweg U, Doerfler W (2001) On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol Genet Genomics 265:225–233

    CAS  Google Scholar 

  • http://www.gmcrops.ewebsite.com/articles/history.html

  • Hu R, Pray CE, Huang J, Rozelle S, Fan C, Zhang C (2009) Reforming intellectual property rights and the Bt cotton seed industry in china: who benefits from policy reform? Res Policy 38:793–801

    Google Scholar 

  • Huang J, Rozelle S, Pray C, Wang Q (2002) Plant biotechnology in China. Science 295:674–677

    CAS  Google Scholar 

  • Huang J, Hu R, van Meijl H, van Tongeren F (2004) Biotechnology boosts to crop productivity in China: trade and welfare implications. J Dev Econ 75:27–54

    Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray CE (2008) Genetically modified rice, yields, and pesticides: assessing farm-level productivity effects in China. Econ Dev Cult Change 56:241–263

    Google Scholar 

  • Huang J, Mi JW, Lin H, Wang Z, Chen R, Hu R, Rozelle S, Pray CE (2010) A decade of Bt cotton in chinese fields: assessing the direct effects and indirect externalities of Bt cotton adoption in China. Sci China Life Sci 53:981–991

    Google Scholar 

  • Huesing J, English L (2004) The Impact of Bt crops on the develo** world. AgBioForum 7(1&2):84–95

    Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (2010) Area wide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Sci 330:222–225

    CAS  Google Scholar 

  • Ismael Y, Bennett R, Morse S (2002) Bt cotton, pesticides, labour and health: a case study of smallholder farmers in the Makhatini Flats, Republic of South Africa Paper presented at the 6th International ICABR Conference, Ravello, Italy

    Google Scholar 

  • Jagadish CT, Indira R, Vandana S (2012) Effect of Bt-transgenic cotton on soil biological health. Appl Biol Res 14(1):5–23

    Google Scholar 

  • James C (2002) Global review of commercialized transgenic crops: 2001 feature: Bt cotton. ISAAA briefs No. 26. ISAAA, Ithaca

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops. ISAAA, Ithaca

    Google Scholar 

  • Jayaraman KS (2009) Transgenic aubergines put on ice. Nature 461:1041

    CAS  Google Scholar 

  • Jennings JC, Kolwyck DC, Kays SB, Whetsell AJ, Suber JB, Cromwell GL, Lirette RP, Glenn KC (2003a) Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed roundup ready soybean meal. J Anim Sci 81:1447–1455

    CAS  Google Scholar 

  • Jennings JC, Albee LD, Kolwyck DC, Surber JB, Taylor ML, Hartnell GF, Lirette RP, Glenn Monsanto KC (2003b) Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed YieldGard Corn Borer Corn. Poult Sci 82:371–380

    CAS  Google Scholar 

  • Jesse LCH, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia 125:241–248

    Google Scholar 

  • Jiang J, Linscombe SD, Wang J, Oard JH (2000) Field evaluation of transgenic rice (Oryza sativa L.) produced by agrobacterium and particle bombardment methods. In: Plant and Animal Genome VIII Conference (January 9–12, 2000, Town and County Hotel, San Diego, CA) (Abstr)

    Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Yong Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Google Scholar 

  • Karihaloo JL, Kumar PA (2009) Bt cotton in India—a status report (second edition) Asia-Pacific Consortium on agricultural biotechnology. (APCoAB), New Delhi

    Google Scholar 

  • Krishna VV, Qaim M (2007) Estimating the adoption of Bt eggplant in India: who benefits from public-private partnership? Food Policy 32:523–543

    Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HPMJ, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    CAS  Google Scholar 

  • Kuiper HA, Konig A, Kleter GA, Hammes WP, Knudsen I (2004) Concluding remarks. Food Chem Toxicol 42:1195–1202

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    CAS  Google Scholar 

  • Li MH, Robinson EH (2000) Evaluation of cottonseed meal derived from insect protected cotton lines 15813 and 15985 as a feed ingredient for catfish. Report No MSL-16179, Trad Cochran National Warm water Aquaculture Centre (Testing facility) Mississippi State University Stoneville MS 38776–40197

    Google Scholar 

  • Liener IE (1994) Implications of anti-nutritional components in soybean food. Crit Rev Food Sci Nutr 34:31–67

    CAS  Google Scholar 

  • Liu ZC, Ye GY, Hu C, Datta SK (2002) Effects of Bt transgenic rice on population dynamics of main nontarget insect pests and dominant spider species in rice paddies. Acta Phytophylacica Sin 29:138–144

    Google Scholar 

  • Liu ZC, Ye GY, Fu Q, Zhang ZT, Hu C (2003) Indirect impact assessment of transgenic rice with cry1Ab gene in predations by the wolf spider, Pirata subpiraticus. Chinese J Rice Sci 17:175–178

    CAS  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399–214

    Google Scholar 

  • Lu Y, Wu K, Jiang Y, **a B, Li P, Feng H, Wyckhuys KAG, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Sci 328:1151–1153

    CAS  Google Scholar 

  • Magaña-Gómez JA, de la Barca AM (2009) Risk assessment of genetically modified crops for nutrition and health. Nutri Rev 67:1–16

    Google Scholar 

  • Magaña-Gómez JA, Cervantes GL, Yepiz-Plascencia G, Barca AMCdl (2008) Pancreatic response of rats fed genetically modified soybean. J App Toxico 28:217–226

    Google Scholar 

  • Mal P, Manjunatha AV, Bauer S, Ahmed MN (2011) Technical efficiency and environmental impact of Bt cotton and non-Bt cotton in North India. AgBioForum 14(3):164–170

    Google Scholar 

  • Malik TH (2011) Standard operating protocols (SOPs) for testing, evaluation, monitoring, approval, release and registration of genetically modified (GM) crop varieties in Pakistan with emphasis on Bt Cotton. The Pak Cotton 55:45–60

    Google Scholar 

  • Marvier M (2001) Ecology of transgenic crops. Am Scientist 89:160–167

    Google Scholar 

  • Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthewset K (2003) Are Bt crops safe? Nat. Biotechnol 21:1003–1009

    CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2004) Are Bt crops safe? AgBioForum 7(1&2):30

    Google Scholar 

  • Mercer DK, Scott KP, Bruce-Johnson WA, Glover LA, Flint HJ (1999) Fate of free DNA and transformation of the oral bacterium streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl Environ Microb 65:6–10

    CAS  Google Scholar 

  • Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tiss Org 73:201–212

    CAS  Google Scholar 

  • Metcalfe DD (2003) Introduction: what are the issues in addressing the allergenic potential of genetically modified foods? Environ Health Persp 11:1110–1113

    Google Scholar 

  • Metcalfe DD, Astwood JD, Townsend R, Sampson HA, Taylor SL, Fuchs RL (1996) Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr 36:s165–s186

    Google Scholar 

  • Morse S, Bennett R, Ismael Y (2004) Why Bt cotton pays for small-scale producers in South Africa. Nat Biotechnol 22:379–380

    CAS  Google Scholar 

  • Murray SR, Butler RC, Hardacre AK, Timmerman-Vaughan GM (2007) Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking and extrusion or in food products. J Agric Food Chem 55:2231–2239

    CAS  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, Van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol Rev 22:79–103

    CAS  Google Scholar 

  • Nielsen K, Van Elsas J, Smalla K (2000) Transformation of Acinetobacter sp strain BD413 (pFG4deltanptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237–1242

    CAS  Google Scholar 

  • Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil nut allergen in transgenic soybeans. N Engl J Med 334:688–692

    CAS  Google Scholar 

  • Noteborn HPJM, Kuiper HA (1994) Safety assessment strategies for genetically modified plant products case study: Bacillus thuringiensis-toxin tomato. In: Jones DD (ed) Proc 3rd Intl Symp on the biosafety results of field tests of genetically modified plants and microorganisms Oakland. CA University of California, Division of Agriculture and Natural Resources, California, 199–207

    Google Scholar 

  • Noteborn HPJM, Bienenmann-Ploum ME, Van Den Berg JHJ, Alink GM, Zolla L, Reynaerts A, Pensa M, Kuiper HA (1995) Safety assessment of the Bacillus thuringiensis insecticidal crystal protein CryIAb expressed in transgenic tomatoes. In: Engel KH, Takeoka GR, Teranishi R (eds) Genetically Modified Foods Safety Aspects Washington, DC American Chemical Society. 134–147

    Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EP, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Ann Rev Entomol 50:271–292

    Google Scholar 

  • Oosterhuis DM, Jernstedt J (1999) Morphology and anatomy of cotton plant. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology and production john willie and sons. Darvers, MA, 170–206

    Google Scholar 

  • Orr DB, Landis DA (1997) Oviposition of Eauropean corn borer (Lepidoptera: pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. J Econ Entomol 90(4):905–909

    Google Scholar 

  • Pakistan national biosafety rules (2005)

    Google Scholar 

  • Palm CJ, Donegan KK, Harris D, Seidler RJ (1994) Quantification in soil of Bacillus thuringiensis var kurstaki d-endotoxin from transgenic plants. Mol Ecol 3:145–151

    CAS  Google Scholar 

  • Paparini A, Romano-Spica V (2004) Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnol Ann Rev 10:85–122

    CAS  Google Scholar 

  • Paparini A, Romano-Spica V (2006) Gene transfer and cauliflower mosaic virus promoter 35 S activity in mammalian cells. J Environ Sci Health 41:437–449

    CAS  Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard® cotton in the USA: early promises versus today’s reality. The Plant J 27(6):489–501

    CAS  Google Scholar 

  • Phipps RH, Beever DE (2001) Detection of transgenic DNA in bovine milk: preliminary results for cows receiving a TMR containing Yieldguard TM MON810. Proc Int Anim Agr Food Sci Conf Indianapolis pp Abst. 476

    Google Scholar 

  • Pilcher CD, Rice ME, Obrycki JJ (2005) Impact of transgenic Bacillus thuringiensis corn and crop phenology on five nontarget arthropods. Environ Entomol 34:1302–1316

    Google Scholar 

  • Poehlman JM (1994) Breeding field crops—third edition. Iowa State University Press, Ames

    Google Scholar 

  • Pray C, Naseem, A (2007) Supplying crop biotechnology to the poor: opportunities and constraints. J Dev Stud 43(1):192–217

    Google Scholar 

  • Pray CE, Nagarajan L (2011) Price controls and biotechnology innovation: are state government policies reducing research and innovation by the Ag biotech industry in India? Forthcoming in Agbioforum

    Google Scholar 

  • Pray C, Ma D, Huang J, Qiao F (2001) Impact of Bt cotton in China. World Dev 29:1–34

    Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China—the benefits continue. Plant J 31:423–430

    CAS  Google Scholar 

  • Prescott VE, Hogan SP (2005) Genetically modified plants and food hypersensitivity diseases: usage and implications of experimental models for risk assessment. Pharmacol Therap 111:374–383

    Google Scholar 

  • Prescott VE, Campbell PM, Mattes J, Rothenberg ME, Foster PS (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure immunogenicity. J Agric Food Chem 53:9023–9030

    CAS  Google Scholar 

  • Purcell JP, Perlak FJ (2004) Global impact of insect-resistant (Bt) cotton. AgBioForum 7(1&2) 27–30

    Google Scholar 

  • Pusztai A (2001) Genetically modified foods: are they a risk to human/animal health action bioscience

    Google Scholar 

  • Pusztai A, Bardocz S, Ewen SWB (2003) Genetically modified foods: potential human health effects. In: D’Mello JPF (ed) Food safety: contaminants and toxins. CAB International, Wallingford Oxon, pp 347–372

    Google Scholar 

  • Qaim M, de Janvry A (2005) Bt cotton and pesticide use in Argentina: economic and environmental effects. Environ Dev Econ 10:179–200

    Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in develo** countries. Science 299:900–902

    CAS  Google Scholar 

  • Rahman M, Rashid H, Shahid AA, Bashir K, Husnain T, Riazuddin S (2007) Insect resistance and risk assessment studies of advanced generations of basmati rice expressing two genes of Bacillus thuringiensis. Electron J Biotechnol 10(2):241–251

    Google Scholar 

  • Rahman M, Shaheen T, Ashraf M, Zafar Y (2012) Bridging genomic and classical breeding approaches for improving crop productivity. Crop Production for Agricultural Improvement, vol 1. Springer Netherland, pp 19–41

    Google Scholar 

  • Richards HA, Chung-Ting Han RG, Hopkins ML, Failla WW, Ward CN, Stewart Jr (2003) Safety assessment of recombinant green fluorescent protein orally administered to weaned rats nutrient interactions and toxicity. J Nutr 133:1909–1912

    CAS  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MM, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    CAS  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480

    CAS  Google Scholar 

  • Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci U S A 94:4211–4216

    CAS  Google Scholar 

  • Schell J, van Montagu M, Holsters M, Zambryski P, Joos H, Inze D, Herrera-Estrella L, Depicker A, de Block M, Caplan A, Dhaese P, Van Haute E, Hernalsteens J-P, de Greve H, Leemans J, Deblaere R, Willmitzer L, Schroder J, Otten L (1983) Ti plasmids as experimental gene vectors for plants. Advances in gene technology: molecular genetics of plants and animals. Miami Winter Symposia 20:191–209

    CAS  Google Scholar 

  • Schlüter K, Fütterer J, Potrykus I (1995) Horizontal gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs- if at all- at an extremely low frequency. Bio Technol 13:1094–1098

    Google Scholar 

  • Schoenly KG, Cohen MB, Barrion AT, Zhang W, Gaolach B, Viajante VD (2003) Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Environ Biosaf Res 2:181–206

    Google Scholar 

  • Schroder M, Poulsen M, Wilcks A et al (2007) A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in wistar rats. Food Chem Toxicol 45:339–349

    CAS  Google Scholar 

  • Schubbert R, Lettman C, Doerfler W (1994) Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genet 242:495–504

    CAS  Google Scholar 

  • Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc Natl Acad Sci U S A 98:11937–11942

    CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic ecological food safety and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    CAS  Google Scholar 

  • Sims SR (1995) Bacillus thuringiensis var kurstaki (Cry1Ac) protein expressed in transgenic cotton: effects on beneficial and other non-target insects. Southwest Entomol 20(4):493–500

    Google Scholar 

  • Sims SR, Holden LR (1996) Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp Kurstaki CryIA(b) protein in corn tissue. Environ Entomol 25:659–664

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Shneider EL (1988) A simple technique for quantification of low level of DNA damage in individual cells. Exp Cell Res 715:184–194

    Google Scholar 

  • Singh AK, Mehta AK, Sridhara S, Gaur SN, Singh BP, Sarma PU, Arora N (2006) Allergenicity assessment of transgenic mustard (Brassica juncea) expressing bacterial cod A gene. Allergy 61:491–497

    CAS  Google Scholar 

  • Stanley-Horn DE, Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R, Jesse LCH, Losey JE, Obrycki JJ, Lewis LC (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Natl Acad Sci U S A 98:11931–11936

    CAS  Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    CAS  Google Scholar 

  • Subedi KD, Ma BL (2007) Dry matter and nitrogen partitioning patterns in Bt and non-Bt near-isoline maize hybrids. Crop Sci 47:1186–1192

    CAS  Google Scholar 

  • Subramanian A, Qaim M (2009) Village-wide effects of agricultural biotechnology: the case of Bt cotton in India. World Dev 37:256–267

    Google Scholar 

  • Subramanian A, Qaim M (2010) The impact of Bt cotton on poor households in rural India. J Dev Stud 46:295–311

    Google Scholar 

  • Sudha SN, Jayakumar R, Vaithilingam S (1999) Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa. Curr Microbiol 38:163–167

    CAS  Google Scholar 

  • Tabashnik BE (2010) Communal benefits of transgenic corn. Science 330:189–190

    CAS  Google Scholar 

  • Tapp H, Stotzky G (1998) Persistence of the insecticidal toxin from Bacillus thuringiensis subsp kurstaki in soil. Soil Biol Biochem 30:471–476

    CAS  Google Scholar 

  • Taylor SL, Hefle SL (2002) Genetically engineered foods: implications for food allergy. Curr Opin Allergy Clin Immunol 2:249–252

    Google Scholar 

  • Tepfer M, Gaubert S, Leroux-Coyau M, Prince S, Houdebine LM (2004) Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter. Environ Biosafety Res 3:91–97

    CAS  Google Scholar 

  • Tice RR, Agurell E, Andeson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicity testing. Env Mol Muta 35:206–221

    CAS  Google Scholar 

  • Tryphonas H, Arvanitakis G, Vavasour E, Bondy G (2003) Animal models to detect allergenicity to foods and genetically modified products: workshop summary. Environ Health Persp 11:221–222

    Google Scholar 

  • Van Lijsebettens M, Vanderhaeghen R, Van Montagu M (1991) Insertional mutagenesis in arabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor Appl Genet 81:277–284

    Google Scholar 

  • Wang G, Wu Y, Gao W, Fok M, Liang W (2008) Impact of Bt cotton on the farmer’s livelihood system in China. International cotton conference, rationales and evolutions of cotton policies in main producing countries. ISSCRI International Conference (May 13–17), Montpellier, France

    Google Scholar 

  • Wu G, Cu HR, Shu Q, **a YW, **ang YB, Gao MW, Cheng X, Altosaar (2000) Stripped stem borer (Chilo suppressalis) resistant transgenic rice with a cry1Ab gene from Bt (Bacillus thuringiensis) and its rapid screening. J Zhejiang University 19:15–18

    CAS  Google Scholar 

  • Xu-Chongren MY, Chang S (2001) Research on biosafety of transgenic Bt cotton. College of Life Sciences, Bei**g University, Bei**g, China

    Google Scholar 

  • Yanni SF, Whaen JK, Ma BL (2011) Field-grown Bt and non-Bt corn: yield, chemical composition, and decomposition. Agron J 103:486–493

    CAS  Google Scholar 

  • Yonemochi C, Fujisaki H, Harada C, Kusama T, Hanazumi M (2002) Evaluation of transgenic event CBH 351 (StarLink) corn in broiler chicks. Anim Sci J 73:221–228

    Google Scholar 

  • Zilberman D, Ameden H, Qaim M (2007) The impact of agricultural biotechnology on yields, risks, and biodiversity in low-income countries. J Dev Stud 43:63–78

    Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the funding agency Pakistan Science Foundation for providing funds through a project “Exploration of Cotton Germplasm Potential Against Drought Stress Using Genomic Approaches”—Project No. PSF/NSLP/P-NIBGE (19)

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehboob-ur-Rahman., Shaheen, T., Irem, S., Zafar, Y. (2015). Biosafety Risk of Genetically Modified Crops Containing Cry Genes. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for a Sustainable World, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_8

Download citation

Publish with us

Policies and ethics

Navigation