Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium

  • Chapter
  • First Online:
CO2 Sequestration, Biofuels and Depollution

Abstract

Selenium (Se) is an example of an essential element becoming more and more insufficient in food crops as a result of intensive plant production in many countries. Se is an essential biological trace element. It is an essential constituent of several enzymes in which it is present in the form of the unusual amino acid selenocysteine (SeCys). Se was first recognized as an essential nutrient in the late 1950s when it was found to replace vitamin E in the diets of rats and chicks for the prevention of vascular, muscular and/or hepatic lesions. Until that time, Se had been thought of only as a toxicant, being associated with “alkali disease” in grazing livestock in the northern Great Plains of the United States. Since that time, Se has become the subject of investigations in many parts of the world. Se enters soils primarily as a result of the weathering of Se-containing rocks, although volcanic activity, dusts such as in the vicinity of coal burning, Se-containing fertilizers, and some waters can also be sources. Se cycles through the food system, being removed from soils by plants and soil microorganisms, which can take up the element into their tissue proteins and metabolize some of it to volatile forms e.g., dimethylselenide. The latter enter the atmosphere to be brought down with precipitation and airborne particulates. This chapter reviews the present knowledge of the Se in agroecosystem. The occurrence of selenium in the environment from soil to food systems is discussed. The most promising and important nanotechnology applications in agriculture; and nano-selenium particles production, agricultural nanotechnology and its use in sustainable development will also be highlighted.

“Corruption has appeared throughout the land and sea by [reason of] what the hands of people have earned so He may let them taste part of [the consequence of] what they have done that perhaps they will return [to righteousness]”. (Holy Quran: Ar-Room, verse 41)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATSDR:

Agency for Toxic Substances and Disease Registry

BSA:

Bovine serum albumin

ETA-AAS:

Electrothermal atomization—Atomic absorption spectroscopy

F-AAS:

Fluorescence—Atomic absorption spectroscopy

FAO/WHO:

Food and Agriculture Organization/World Health Organization

FDA:

Food and Drug Administration

FW:

Fresh weight

GSH:

Glutathione

ICP MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

IUPAC:

International Union of Pure and Applied Chemistry

HNO3 :

Nitric acid

LC-ICP-MS:

Liquid Chromatography—Inductively Coupled Plasma Mass Spectrometry

MAD:

Multi-wavelength anomalous diffraction (or dispersion)

MAK:

Maximum concentration of a chemical substance on air at the workplace (in German)

RDAs:

Recommended dietary allowances

SeCys:

Selenocysteine

SeGSH:

Selenoglutathione

SeMet:

Selenomethionine

SeMC:

Selenomethylocysteine

SCENIHR:

Scientific Committee on Emerging and Newly Identified Health Risks

US EPA:

U.S. Environmental Protection Agency

WHO:

World Health Organization

References

  • Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, Mora M (2013) Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 49:175–185. doi:10.1007/s00374-012-0705-2

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28:313–318

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Shrinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    CAS  Google Scholar 

  • Alva AK (1992) Micronutrient status of Florida sandy soils under citrus production. Commun Soil Sci Plant Anal 23:2493–2510

    CAS  Google Scholar 

  • Ashkarran AA, Zad AI, Mahdavi SM, Ahadian MM, Nezhad MRH (2009) Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method. Appl Phys A Mater Sci Process 96(2):423–428

    Google Scholar 

  • Aslan K, Holley P, Geddes CD (2006) Metal-enhanced fluorescence from silver nanoparticledeposited polycarbonate substrates. J Mater Chem 16:2846–2852

    CAS  Google Scholar 

  • ATSDR (2002) Draft toxicological profile for several trace elements. U.S. Dept. Health & Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Ball P, Garwin L (1992) Science at the atomic scale. Nature 355:761–766

    Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    CAS  Google Scholar 

  • Banuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1203–1213

    CAS  Google Scholar 

  • Baum MK, Miguez-Burbano MJ, Campa A, Shor-Posner G (2000) Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J Infect Dis 182(suppl 1):S69–S73

    CAS  Google Scholar 

  • Belzile N, Chen Y-W, Xu R (2000) Early diagenetic behavior of selenium in lake sediments. Appl Geochem 15:1439–1454

    CAS  Google Scholar 

  • Berzelius JJ (1818) Lettre de M. Berzelius a M. Berthollet sur deux metaux nouveaux. Annales de Chimie et de Physique, Série 2, 7:199–202

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam M, Hagens W, Bulder A, De Heer C, ten Voorde S, Wijnhoven S, Marvin H, Sips A (2007) Health impact of nanotechnologies in food production. RIKILT, Wageningen. http://edepot.wur.nl/120669. Accessed 8 May 2010

  • Brown TA, Shrift A (1982) Selenium-toxicity and tolerance in higher-plants. Biol Rev 57:59–84

    CAS  Google Scholar 

  • Broyer TC, Huston RP, Johnson CM (1972) Selenium and nutrition of Astragalus 1. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    CAS  Google Scholar 

  • Cao J, Hu X (2009) Synthesis of gold nanoparticles using halloysites. e-J Surf Sci Nanotechnol 7:813–815

    Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and eukaryotic alga with special reference to nanogold formation-a novel phenomenon. J Appl Phycol 21(1):145–152

    CAS  Google Scholar 

  • Chau CF, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    CAS  Google Scholar 

  • Chen H, Roco MC (2009) Map** nanotechnology innovations and knowledge-global and longitudinal patent and literature analysis. Integrated series in information system. Springer Science + Business Media, LLC. doi:10.1007/978-0-387-71619-0

    Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Lett Appl Microbiol 37:105–108

    CAS  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006a) Nanotechnology in nutraceuticals and functional foods. Food Technol 3:30–36

    Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006b) Food protein based materials as nutraceuticals delivery systems. Trends Food Sci Technol 17:272–283

    CAS  Google Scholar 

  • Chen Y-W, Li L, D’Ulivo A, Belzile N (2006c) Extraction and determination of elemental selenium in sediments—A comparative study. Analytica Chimica Acta 577:126–133. doi:10.1016/j.aca.2006.06.020

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  • Combs GF Jr (2005) Global importance of selenium and its relation to human health. In: Welch RM, Ãakmak I (eds) Impacts of agriculture on human health and nutrition. In: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford, UK. http://www.eolss.net. Accessed 25 Aug 2012

  • Combs GF, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79:179–192

    CAS  Google Scholar 

  • Crombie AC (1959) Medieval and early modern science, vol 1. Doubleday, New York, p 137, 230

    Google Scholar 

  • Crystal RG (1973) Elemental selenium: structure and properties. In: Klayman DL, Gunther WHH (eds) Organic selenium compounds: their chemistry and biology. Wiley, New York, pp 107–167

    Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry-recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    CAS  Google Scholar 

  • Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium: a reevaluation. Limnol Oceanogr 29:1179–1192

    CAS  Google Scholar 

  • Davda J, Labhasetwar V (2002) Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 233:51–59

    CAS  Google Scholar 

  • Davis R, Guliants VV, Huber G, Lobo RF, Miller JT, Neurock M et al (2009) An international assessment of research in catalysis by nanostructure and materials. WTEC, Baltimore. http://www.wtec.org/catalysis/WTEC-CatalysisReport-6Feb2009-color-hi-res.pdf. Accessed 21 March 2013

  • Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer-Verlag, Berlin, pp 17–35. doi:10.1007/978-3-642-18312-6-1

    Google Scholar 

  • Degant O, Schwechten D (2002) Wheat flour with increased water binding capacity and process and equipment for its manufacture. German Patent DE10107885A1

    Google Scholar 

  • Denina B, Simmons D, Wallascheeger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343

    Google Scholar 

  • Dhillon KS, Dhillon SK (1999) Adsorption-desorption reactions of selenium in some soils of India. Geoderma 93:19–31

    CAS  Google Scholar 

  • Di Gregorio S (2008) Selenium: a versatile trace element in life and environment. In: Prasad AS (ed) Trace elements in human health and disease, vol 2. Academic, New York, pp 593–622

    Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    CAS  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. doi:10.1007/s10725-012-9735-x

    CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals”—a meaningless term? Pure Appl Chem 74:793–807

    CAS  Google Scholar 

  • EC No. 258/97 (1997). Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredient. Official Journal of the European Union

    Google Scholar 

  • EC No. 1935/2004 (2004). Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Official Journal of the European Union

    Google Scholar 

  • EC No. 1907/2006 (2006). Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal of the European Union

    Google Scholar 

  • EC No. 1272/2008 (2008). Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. Official Journal of the European Union

    Google Scholar 

  • EC No. 1223/2009 (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official J Eur Union

    Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:237–279

    Google Scholar 

  • Elrashidi MA, Adriano DC, Lindsay WL (1989) Solubility, speciation and transformation of selenium in soils. In: Jacobs LW (Ed.) Selenium in agriculture and the environment. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 51–69

    Google Scholar 

  • Enghag P (2004) Encyclopedia of the elements-technical data, history, processing and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nanosized (100–500 nm) selenium production by probiotic lactic acid bacteria. Inter J Biosci Biochem Bioinform 1:148–152

    Google Scholar 

  • ETC, Action Group on Erosion, Technology and Concentration (2005a) ETC group report: NanoGeoPolitics. ETC Group Surveys the Political Landscape. http://www.etcgroup.org/upload/publication/51/01/com89specialnanopoliticsjul05eng.pdf. Accessed 21 March 2013

  • ETC, Action Group on Erosion, Technology and Concentration (2005b) The potential impacts of nano-scale technologies on commodity markets: the implications for commodity dependent develo** countries. http://www.etcgroup.org/upload/publication/45/01/southcentre.commodities.pdf. Accessed 21 March 2013

  • Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484S–1491S

    CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Sign 14(7):1337–1383. doi:10.1089/ars.2010.3275 (Mary Ann Liebert, Inc)

    Google Scholar 

  • FAO (1996) Report of the World Food Summit. FAO, Rome

    Google Scholar 

  • FAO/WHO (1998) Preparation and use of food-based dietary guidelines. Report of a joint FAO/WHO consultation. Geneva, World Health Organization (WHO Technical Report Series, No. 880)

    Google Scholar 

  • FAO/WHO (2004) Vitamin and mineral requirements in human nutrition, 2nd edn. Report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. Geneva, World Health Organization. http://whqlibdoc.who.int/publications/2004/9241546123.pdf. Accessed 21 March 2013

  • FAO/WHO (2009) FAO/WHO joint expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety applications. Meeting Report, Rome

    Google Scholar 

  • Fendler JH (2001) Colloid chemical approach to nanotechnology. Korean J Chem Eng 18:1–13

    CAS  Google Scholar 

  • Fernández-Martίnez A, Charlet ĆL (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110. doi:10.1007/s11157-009-9145-3

    Google Scholar 

  • Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    CAS  Google Scholar 

  • Feynman R (1959) The classic talk by Richard Feynman entitled ‘There’s plenty of room at the bottom’ delivered at the annual meeting of the American Physical Society at the California Institute of Technology in 1959 is possibly the first serious exposition on the problem of manipulating nanoscale objects (the talk is available on the web at http://www.zyvex.com/nanotech/feynman.html). Accessed 21 March 2013

  • Finley JW, Ip C, Lisk DJ, Davis CD, Hintze KJ, Whanger PD (2001) Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49:2679–2683

    CAS  Google Scholar 

  • Fisinin VI, Papazyan TT, Surai PF (2009) Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit Rev Biotechnol 29:18–28

    CAS  Google Scholar 

  • Fordyce FM (2005) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology. Elsevier, London, pp 373–415

    Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97

    CAS  Google Scholar 

  • Frankenberger WT, Engberg RA (1998) Environmental chemistry of selenium. Marcel Dekker, New York, p 736

    Google Scholar 

  • Frankenberger WT, Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankerberger WT, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 369–387

    Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175:490–500

    CAS  Google Scholar 

  • Frost DV (1972) Two faces of selenium-can selenophobia be cured? In: Hemphill D (ed) CRC critical reviews in toxicology. CRC, Boca Raton, pp 467–514

    Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2003) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering and soils In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 5. Elsevier, Oxford, pp 225–227

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    CAS  Google Scholar 

  • Gao XY, Hiroshi M (2005) Peptide-based nanotubes and their applications in bionanotechnology. Adv Mater 17:2037–2050

    CAS  Google Scholar 

  • Gao XY, Zhang JS, Zhang LD (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    CAS  Google Scholar 

  • Gao X, Gao T, Zhang L, Mater J (2003) Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J Mater Chem 13:6–8

    Google Scholar 

  • Garbisu C, Gonzalez S, Yang WH (1995) Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis. Biofactors 5:29–37

    CAS  Google Scholar 

  • Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    CAS  Google Scholar 

  • Gardea-Torresdey JG, Parsons GE, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nanoletters 2:397–401. doi:10.1021/nl015673

    CAS  Google Scholar 

  • Gates B, Mayers B, Cattle B, **a Y (2002a) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 12:219–227

    CAS  Google Scholar 

  • Gates B, Mayers B, Grossman A, **a Y (2002b) A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv Mater 14:1749–1752

    CAS  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    CAS  Google Scholar 

  • Gregory PJ, Ingram JSI, Brklacich M (2005) Climate change and food security. Philos Trans Roy Soc B 360:2139–2148

    CAS  Google Scholar 

  • Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198. doi:10.1016/j.foodpol.2012.01.001

    Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. International. http://www.ifpri.org/sites/default/files/publications/ifpridp01064.pdf/27.1.2013. Food Policy Research Institute (IFPRI), NW, Washington, USA

  • Hanauer M, Lotz A, Pierrat S, Sonnichsen C, Zins I (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885

    CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    CAS  Google Scholar 

  • Haudin CC, Fardeau ML, Amenc L, Renault P, Ollivier B, Leclerc-Cessac E, Staunton S (2007) Responses of anaerobic bacteria to soil amendment with selenite. Soil Biol Biochem 39:2408–2413

    CAS  Google Scholar 

  • Haygarth PM (1994) Global importance and cycling of selenium. In: Frankenberger WT, Benson S (eds) Selenium in the environment. Marcel-Dekker, New York, pp 1–28

    Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. doi:10.1016/j.jtemb.2005.02.010

    CAS  Google Scholar 

  • Hoefer F (1842) Histoire de la Chimie, vol 1, p 389 (Cited in: Mellor JW (1934) A comprehensive treatise on inorganic and theoretical chemistry, vol x. Longmans Green, London, pp 693–696)

    Google Scholar 

  • Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99:836–843

    CAS  Google Scholar 

  • Hu CH, Li YL, **ong L, Zhang HM, Song J, **a MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Tech 177:204–210

    Google Scholar 

  • Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavening effiency of nano-Se in vitro. Free Radical Bio Med 35(7):805–813. doi:10.1016/S0891-5849(03)00428-3

    Google Scholar 

  • Huang J, Chen C, He N, Hong J, Lu Y, Qingbiao L, Shao W, Sun D, Wang XH, Wang Y, Yiang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–106

    Google Scholar 

  • Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88. doi:10.1007/s00284-008-9160-6

    CAS  Google Scholar 

  • Hurd DL, Kipling JJ (1964) Origins and growth of physical science, Part 2. Penguin Books, Harmondsworth

    Google Scholar 

  • Hurst R, Armah CN, Dainty JR, Hart DJ, Teucher B, Goldson AJ, Broadley MR, Motley AK, Fairweather-Tait SJ (2010) Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91:923–931

    CAS  Google Scholar 

  • IFST, Institute of Food Science and Technology (2006) Nanotechnology. http://www.ifst.org/uploadedfiles/cms/store/ATTACHMENTS/Nanotechnology.pdf. Accessed 21 March 2013

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Jana NR, Pal T, Sau TK, Wang ZL (2000) Seed- mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79(9):1367–1370

    CAS  Google Scholar 

  • Jiang W (1994) Delineating the distribution of selenium in bacterial cultures that reduce and methylate oxyanions of this toxic metalloid. Master of Science, The Faculty of the Department of Chemistry, Sam Houston State University, Huntsville, Texas

    Google Scholar 

  • Johnson CC, Fordyce FM, Rayman MP (2010) Symposium on “Geographical and geological influences on nutrition”: factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc 69:119–132

    Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Woodrow Wilson International Center for Scholars. Project on Emerging Nanotechnologies. www.nanoforum.org. Accessed 20 May 2010

  • Juniper DT, Phipps RH, Ramos-Morales E, Bertin G (2008) Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J Anim Sci 86:3100–3109

    CAS  Google Scholar 

  • Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. LLC, CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer Science + Business Media, Berlin

    Google Scholar 

  • Kabata-Pendias E, Pendias H (2001) Trace elements in soils and plants, 3rd edn. LLC, CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kalpana Sastry R, Rao NH, Cahoon R, Tucker T (2007) Can nanotechnology provide the innovations for a second green revolution in Indian agriculture? In: Paper presented in NSF nanoscale science and engineering grantees conference, 3–6 December 2007

    Google Scholar 

  • Kalpana Sastry R, Rashmi HB, Rao NH, Ilyas SM (2010) Integrating nanotechnology into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Change 77:639–648

    Google Scholar 

  • Kalpana Sastry R, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400. doi:10.1016/j.foodpol.2010.10.012

    Google Scholar 

  • Kim JS (2007) Antibacterial activity of Ag + ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13(4):718–722

    CAS  Google Scholar 

  • Klayman DL, Gunther WHH (1973) Organic selenium compounds: their chemistry and biology. Wiley, New York

    Google Scholar 

  • Kowshik M, Ashataputre S, Kharrazi S, Kulkarni SK, Paknikari KM, Vogel W, Urban J (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    CAS  Google Scholar 

  • Kumar AS, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    CAS  Google Scholar 

  • Kumar SA, AbyanehMK, GosaviSW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Google Scholar 

  • Kuzma J (2010) Nanotechnology in animal production-Upstream assessment of applications. Livest Sci 130:14–24

    Google Scholar 

  • Kyriakopoulos A, Behne D (2002) Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 145:1–46

    CAS  Google Scholar 

  • Lal R (2007) Ushering soil science into the 21 century. President’s message, Soil Science Society of America. Nov 7, 2007, Madison Wisconsin. http://www.soils.org/about-society/presidents-message/archive/16. Accessed 22 May 2010

  • Lam JCW, Tanabe S, Wong BSF, Lam PKS (2004) Trace element residues in eggs of little egret (Egretta garzetta) and black-crowned night heron (Nycticorax nycticorax) from Hong Kong, China. Marine Pollut Bull 48:378–402

    Google Scholar 

  • Lawson S, Macy JM (1995) Bioremediation of Se (IV) in oil refinery wastewater. Appl Microbiol Biotechnol 43:762–765

    Google Scholar 

  • Lemly AD (1997) Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicol Environ Safety 36:275–281

    CAS  Google Scholar 

  • Lenz M, Gmerek A, Lens PNL (2006) Selenium speciation in anaerobic granular sludge. Inter J Environ Anal Chem 86:615–627

    CAS  Google Scholar 

  • Levander OA (1976) Selective aspects of the comparative metabolism and biochemistry of selenium and sulfur. In: Prasad AS (ed) Trace elements in human health and disease, vol 2. Academic, New York, pp 135–163

    Google Scholar 

  • Li Y-H (2000) A compendium of geochemistry: from solar nebula to the human brain. Princeton University Press, Princeton

    Google Scholar 

  • Liao CD, Hung WL, Jan KC, Yeh AI, Ho CT, Hwang LS (2010) Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem 119:896–902

    CAS  Google Scholar 

  • Lin Z, Zayed A, Terry N (1999) Role of selenium volatilization in the management of selenium-laden agricultural drainage water. 5th International Conference on the Biogeochemistry Trace Elements, Vienna, pp 878–879

    Google Scholar 

  • Lipiec E, Siara G, Bierla K, Ouerdane L, Szpunar J (2010) Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC-inductively coupled plasma mass spectrometry. Anal Bioanal Chem 397:731–741

    CAS  Google Scholar 

  • Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, pp 23–53

    Google Scholar 

  • Masscheleyn PH, Delaune R, Patrik WH Jr (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 1:91–96

    Google Scholar 

  • Mayland HF, James LJ, Panter KE, Sonderegger JL (1989). Selenium in seleniferous environments. In: Jacobs LW (ed). Selenium in Agriculture and the Environment. SSSA Special Publication 23. Madison, WI: ASA and SSSA, pp. 15–50

    Google Scholar 

  • Maynard A (2010) Presentation: nanotechnology and human health impact. A framework for strategic research. http://www.nanotechproject.org/process/files/2741/18_nanotechnologyhumanhealthimpactframeworkstrategicresearch.pdf. Accessed June 2010

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V et al (2006) Safe handling of nanotechnology. Nature 444:267–269

    CAS  Google Scholar 

  • McNeal JM, Balistrieri LS (1989) Geochemistry and occurrence of selenium: an overview. In: Jacob LW (ed) Selenium in agriculture and the environment. Soil Science Society of America Special Publication no. 23. American Society of Agronomy and Soil Science Society of America, Madison, pp 1–14

    Google Scholar 

  • Mehdaoui S, Benslim N, Aissaoui O, Benabdeslem M, Bechiri L, Otmani A, Portier X, Nouet G (2009) Study of the properties of CuInSe2 materials prepared from nanoparticle powder. Mater Charact 60:451–455

    CAS  Google Scholar 

  • Mildau G, Huber B (2010) The new EC cosmetics regulation 1223/2009- contents and first explanations. SOFW J Engl Edition 136:39–59

    Google Scholar 

  • Moon JW, Roh Y, Lauf RJ, Vali H, Yeary LW, Phelps TJ (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbiol Meth 70(1):150–158

    CAS  Google Scholar 

  • Moore Jr PA, Daniel TC, Gilmour JT, Shreve BR, Edwards DR, Wood BH (1998) Decreasing metal runoff from poultry litter with aluminum sulfate. J Environ Qual 27:92–99

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuC4 ions by the fungus Verticillium sp and surface trap** of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    CAS  Google Scholar 

  • Muniz-Naveiro O, Dominguez-Gonzalez R, Bermejo-Barrera A, Bermejo-Barrera P, Cocho JA, Fraga JM (2007) Selenium speciation in cow milk obtained after supplementation with different selenium forms to the cow feed using liquid chromatography coupled with hydride generationatomic fluorescence spectrometry. Talanta 71:1587–1593

    CAS  Google Scholar 

  • Murphy K (2008) Nanotechnology: agriculture’s next industrial revolution, pp 3–5. Financial Partner, Spring. 8–9

    Google Scholar 

  • Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346 (Pt 1):1–8

    Google Scholar 

  • Myneni SCB, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(I, III) oxides. Science 278(5340):1106–1109. doi:10.1126/science.278.5340.1106

    CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and the formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    CAS  Google Scholar 

  • Neal RH, Sposito G (1989) Selenate adsorption on alluvial soils. Soil Sci Soc Am J 53:70–74

    CAS  Google Scholar 

  • Nightingale SD (2008) How and where might nanotechnology improve food safety? IFT international food nanoscience conference, June 27–28, New Orleans

    Google Scholar 

  • Nowak J, Kaklewski K, Klódka D (2002) Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes. Sci Total Environ 291:105–110

    CAS  Google Scholar 

  • Nozaki Y (2005) A fresh look at element distribution in the North Pacific, AGU. http://www.agu.org/eos.elec/97025e.html. Accessed 21 March 2013

  • Nriagu JO (1989) Global cycling of selenium. In: Milan I (ed) Occurrence and distribution of selenium. CRC, Boca Raton, pp 327–340

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  • Ogi T, Saitoh N, Nomura T, Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res. doi:101007/s11051-009-9822-8

    Google Scholar 

  • Oldfield JM (1990) Selenium: its uses in agriculture, nutrition and health and the environment. Selenium-Tellurium development association, Grimbergen, Belgium

    Google Scholar 

  • Olin A, Nolang G, Osadchii E, Ohman LO, Rosen E (2005) Chemical thermodynamics of selenium. North Holland Elsevier Science Publishers B. V, The Netherlands

    Google Scholar 

  • Opara L (2004) Emerging technological innovation triad for smart agriculture in the 21st century. Part I. Prospects and impacts of nanotechnology in agriculture, Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, 2004, invited overview paper. vol VI. July

    Google Scholar 

  • Oremland RS, Herbal MJ, Blum JS, Langely S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp: towards understanding biochemical synthesis mechanism. Chem Bio Chem 9:1415–1422

    CAS  Google Scholar 

  • Parker DR, Page AL (1994) Vegetation management strategies for remediation of selenium contaminated soils. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 327–341

    Google Scholar 

  • Pastoriza-Santos I, Liz-Marzan LM (2000) Reduction of silver nanoparticles in DMF formation of monolayers and stable colloids. Pure Appl Chem 72(1–2):83–90

    CAS  Google Scholar 

  • Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54(9):3570–3582. doi:10.1021/ja01348a011

    CAS  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of calcogenide-based nanoparticles via reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology. doi:10.1088/0957-4484/19/15/155603

    Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Plant cell monographs 17. Springer, Berlin, pp 225–241 (doi:10.1007/978-3-642-10613-2_10)

    Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL et al (2003) Arsenic and selenium. In: Lollar BS, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 9, environmental geochemistry. Elsevier, London, pp 17–66

    Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2004). Arsenic and selenium. In: Dollar BS (ed.) Environmental geochemistry 9:17–66

    Google Scholar 

  • Prakash NT, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2010) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31:1857–1862

    Google Scholar 

  • Prokisch J, Zommara M (2008) Process for producing elemental selenium nanospheres PCT/IB2008/052838 date of receipt: 15 July 2008 receiving office: International Bureau of the World intellectual property organization your reference: P104315

    Google Scholar 

  • Prokisch J, Széles E, Kovács B, Darόczy L, Zommara M (2008) Formation of metal selenium nanospheres in bacteria: is it a possible detoxification mechanism? Cer Res Commun 36:947–995

    Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology, vol 14. CAB International, New York, pp 258–267

    Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer-Verlag, Berlin, pp 1–14 (doi:10.1007/978-3-642-18312-6-1)

    Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    CAS  Google Scholar 

  • Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253

    CAS  Google Scholar 

  • Reilly C (2006) Selenium in food and health, 2nd edn. Springer Science + Business Media, LLC. New York, USA

    Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment. Springer, Berlin

    Google Scholar 

  • Reyes LH, Mar JL, Rahman GM, Seybert B, Fahrenholz T, Kingston HM (2009) Simultaneous determination of arsenic and selenium species in fish tissues using microwaveassisted enzymatic extraction and ion chromatography inductively coupled plasma mass spectrometry. Talanta 78:983–990

    CAS  Google Scholar 

  • Robinson DKR, Morrison MJ (2009) Nanotechnology developments for the agrifood sector-report of the observatory NANO

    Google Scholar 

  • Rodrıguez-Perez A, Flores-Acosta M, Peirez-Salas R, Rodrıguez-Mijangos R (2006) Cu halide nanoparticle formation by diffusion of copper in alkali halide crystals. Rev Mexi de Fisica 52(2):151–154

    Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium geobotany, biochemistry, toxicity and nutrition. Academic, New York, p 7

    Google Scholar 

  • Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G (1994) Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Trace Elem Res 41:103–114

    Google Scholar 

  • Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the develo** world. PLoS Med 2(5):383–386, 97

    Google Scholar 

  • Salerno M, Landoni P, Verganti R (2008) Designing foresight studies for nanoscience and nanotechnology (NST) future developments. Technol Forecast Soc Change 75:1202–1223

    Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556

    CAS  Google Scholar 

  • Sarin L (2010) Nano-selenium: novel formulations for biological and environmental applications. Ph. D. Thesis. Division of Engineering at Brown University, Providence, Rhode Island, USA

    Google Scholar 

  • Sastry M, Ahmad A, Islam NI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804

    CAS  Google Scholar 

  • Savage N, Diallo M, Duncan J, Street A, Sustich R (2009) Nanotechnology applications for clean water. William Andrew. Micro and nano technologies Series, Norwich

    Google Scholar 

  • SCENIHR, Scientific Committee on Emerging and Newly-Identified Health Risks (2010) http://ec.europa.eu/health/scientific_committees/emerging/index_en.htm#. Accessed Jan 2010

  • Scharz K, Foltz CM (1957) Selenium as an integral part of Factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    Google Scholar 

  • Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particleassociated Se to the bivalve Potamocorbula amurensis. Environ Sci Technol 34:4504–4510

    CAS  Google Scholar 

  • Schrauzer GN (2004) Selenium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim, pp 1365–1406

    Google Scholar 

  • Schueler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52(4):464–473

    Google Scholar 

  • Scott NR (2005) Nanotechnology and animal health. Rev Sci Tech Off int Epiz 24(1):425–432

    CAS  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194

    CAS  Google Scholar 

  • Shahi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377

    Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    CAS  Google Scholar 

  • Shahverdi N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6(1):61–70

    Google Scholar 

  • Shahverdi A-R, Shakibaie M, Nazari P (2011) Basic and practical procedures for microbial synthesis of nanoparticles. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer-Verlag, Berlin, pp 177–196 (doi:10.1007/978-3-642-18312-6-1)

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure RM, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–948

    CAS  Google Scholar 

  • Shao S, Zheng B (2008) The biogeochemistry of selenium in Sunan grassland, Gansu, Northwest China, casts doubt on the belief that Marco Polo reported selenosis for the first time in history. Environ Geochem Health 30:307–314

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    CAS  Google Scholar 

  • Shehata SA, El-Ramady H (2012) Micronutrients: uptake and its roles in plants. Print house Fares Abd El-Hameed for Printing and Publishing, ISBN-No. 978-977-403-505-0 (in Arabic)

    Google Scholar 

  • Shrift A (1969) Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20:475–495

    CAS  Google Scholar 

  • Shriver DF, Atkins PW (1999) Inorganic chemistry, 3rd edn. Oxford University, Oxford

    Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf B Biointerface 57:97–101

    Google Scholar 

  • Smith MI, Franke KW, Westfall BB (1936) The selenium problem in relation to public health. Public Health Rep 51:1496–1505

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 44:1133–1138. doi:10.1007/s00449-008-0224-6

    CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. doi:10.1016/j.tibtech.2008.10.010

    CAS  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radical Biol Med 17:45–64

    CAS  Google Scholar 

  • Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic bird. Aquat Toxicol 57:27–37

    CAS  Google Scholar 

  • Sreelata M (2008) India looks to nanotechnology to boost agriculture. Sci-Dev.net. http://www.scidev.net/en/news/india-looks-to-nanotechnology-to-boost-agriculture.html. Accessed 18 May 2010

  • Steinnes E (2003) Biogeochemiacl cycling of iodine and selenium and potential geomedicval relevance. In: Skinner HC, Berger AR (eds) Geology and health: closing gap. Oxford University Press, Oxford, pp 57–60

    Google Scholar 

  • Stroud JL, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao F-J (2010) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332:19–30

    CAS  Google Scholar 

  • Taniguchi N (1974) Proceedings of International Conference on Precision Engineering (ICPE), Tokyo, Japan

    Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT Jr, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    Google Scholar 

  • Thornton I (1981) Geochemical aspects of the distribution and forms of heavy metals in soils. In: Lepp NW (ed) Effect of heavy hetal pollution on plants: metals in the environment, vol II. Applied Science Publishers, London, pp 1–34

    Google Scholar 

  • Uchida H, Shimoishi Y, Toei K (1980) Gas chromatographic determination of selenium (-II, 0), - (IV), and (VI) in natural waters. Environ Sci Technol 14: 541

    Google Scholar 

  • USGS, U.S. Geological Survey (2013) Mineral commodity summaries 2013. http://minerals.usgs.gov/minerals/pubs/mcs/2013/mcs2013.pdf/. Accessed 26 Jan 2013

  • van der Krogt P (2004) Elementology and elements multidictionary. http://vanderkrogt.net/elements/elem/se.html. Accessed 21 March 2013

  • Velinsky DJ, Cutter GA (1990) Determination of elemental and pyrite selenium in sediments. Anal Chim Acta 235:419–425

    CAS  Google Scholar 

  • Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G (2001) Adverse health effects of selenium in humans. Rev Environ Health 16:233–251

    CAS  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Google Scholar 

  • Wang D, Alfthan G, Aro A (1994) The impact of selenium fertilization on the distribution of selenium in rivers in Finland. Agric Ecosyt Environ 50:133–149

    Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    CAS  Google Scholar 

  • Waruingi M, Njoroge J (2008) Nanotech in Kenya. Business Daily Africa. Accessed 21 May 2010

    Google Scholar 

  • Watanabe J, Iwamoto S, Ichikawa S (2005) Entrapment of some compounds into biocompatible nano-sized particles and their releasing properties. Coll Surf B Biointerfaces 42:141–146

    CAS  Google Scholar 

  • Wei S, Zhou Q (2008) Trace elements in agro-ecosystems. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, pp 55–79

    Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937. doi:10.1093/jxb/erh192

    CAS  Google Scholar 

  • WHO, World Health Organization (2011) Selenium in drinking-water-Background document for development of WHO Guidelines for Drinking-water Quality. WHO/HSE/WSH/10.01/14

    Google Scholar 

  • WHO (1987) Environmental Health Criteria 58—Selenium. Geneva: WHO

    Google Scholar 

  • Wolffram S, Anliker E, Scharrer E (1986) Uptake of selenate and selenite by isolated intestinal brush-border membrae vesicles from pig, sheep, and rat. Biol Trace Elem Res 10:293–306

    CAS  Google Scholar 

  • Wright MT, Parker C, Amrhein DR (2003) Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environ Sci Technol 37:4709–4716

    CAS  Google Scholar 

  • Yada R (2009) Nanotechnology: a new frontier in foods, food packaging, and nutrient delivery. In: Pray L, Yaktine A (eds) Nanotechnology in food products. National Academies, Washington DC

    Google Scholar 

  • Yamada H, Kase Y, Usuki M, Kajiyama S (1999) Selective determination and formation of elemental selenium in soils. Soil Sci Plant Nutr 45(2):403–408

    CAS  Google Scholar 

  • Yang N, Aoki K (2005) Voltammetry of the silver alkylcarboxylate nanoparticles in suspension. Electrochim Acta 50:4868–4872

    CAS  Google Scholar 

  • Yokota A, Shigeoka S, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol 86:649–651

    CAS  Google Scholar 

  • Zachara BA, Pileexi A (2000) Selenium concentration in the milk of breast-feeding mothers and its geographic distribution. Environ Health Perspect 108:1043–1046

    CAS  Google Scholar 

  • Zayed A, Pilon-Smits E, de Souza M, Lin ZQ, Terry N (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry NN, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 61–83

    Google Scholar 

  • Zduôska H, Bloch-BogusÝawska E, Przygoôska J, Ţliwka K, Zachara BA (1994) Selenium concentration and glutathione peroxidase activity in the organs of people died a violent death. In: Kabata-Pendias A, Szteke B (eds) Arsenic and selenium in the environment. Ecologic analyt problem (Polish Ac Sci, pp 190–193) (in Polish and cited from Kapata-Pendias and Mukherjee 2007)

    Google Scholar 

  • Zha LY, Xu ZR, Wang MQ, Gu LY (2008) Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. J Anim Physiol Anim Nutr 92:131–140

    CAS  Google Scholar 

  • Zhang YQ, Frankenberger WT Jr (2003) Determination of selenium fractionation and speciation in wetland sediments by parallel extraction. Int J Environ Anal Chem 83:315–326

    CAS  Google Scholar 

  • Zhang YQ, Frankenberger WT Jr (2005) Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated S and columns. Sci Total Environ 346:280–285

    CAS  Google Scholar 

  • Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. Biofactors 15:27–38

    Google Scholar 

  • Zhang J, Wang H, Bao Y, Zhang L (2004) Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci 75:237–244. doi:10.1016/j.lfs.2004.02.004

    CAS  Google Scholar 

  • Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109

    CAS  Google Scholar 

  • Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-Methylselenocysteine in mice. Toxicol Sci 101(1):22–31. doi:10.1093/toxsci/kfm221

    CAS  Google Scholar 

  • Zingaro RA, Cooper R (1974) Selenium. Van Nostrand Reinhold, New York, pp 788–807 (cited from Reilly 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan R. El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Ramady, H., Domokos-Szabolcsy, É., Shalaby, T., Prokisch, J., Fári, M. (2015). Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for a Sustainable World, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_5

Download citation

Publish with us

Policies and ethics

Navigation