Integrated Simulation of Interactive Surface-Water and Groundwater Systems

  • Chapter
  • First Online:
Advances in Water Resources Engineering

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 14))

Abstract

Effective management of watersheds and ecosystems requires a comprehensive knowledge of hydrologic processes, and the ability to predict and quantify reliably the impacts due to anthropogenic or natural changes in water availability and water quality. For integrated water resources management studies in which both surface water and groundwater are interactive, a technically rigorous and physically based approach is essential. Simulation models have been used increasingly to provide a predictive capability in support of water resources, and environmental and restoration projects. Often, simplified models are used to quantify complex hydrologic and transport processes in surface and subsurface domains. Such models incorporate restrictive assumptions relating to spatial variability, dimensionality, and interactions of components in flow and transport processes. During the past decade, with the advent of high-speed personal computers, a number of rigorous integrated surface-water/groundwater models have been developed to circumvent these limitations. In general, a typical model of an integrated hydrologic system may be divided into three interactive and interconnected domains: subsurface, overland, and channels/streams, in which water flow and transport of constituents can occur. In this chapter, the following are presented and discussed: a description of relevant processes relating to water flow and solute transport in conjunction with governing equations for all domains; procedures for model development and calibration; and two field application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A C :

Wetted cross-sectional area of the channel segment (L2)

A GO :

Area at the interface between overland and subsurface (L2)

A IJ :

Area through which mass influx passes from domain J to domain I (L2)

a ijmn :

Dispersivity tensor (L)

B C :

Top width of channel (L)

b :

Thickness of channel bed (L)

b :

Fitting parameter (dimensionless) (Eq. 2.4c)

b IJ :

Distance between two centroids in domains I and J (L)

C 1, C 2 :

Fitting parameters (dimensionless) (Eq. 2.14b)

C 3 :

Fitting parameters (dimensionless) (Eq. 2.14c)

C k :

Solute concentration of component k (M/L3)

C d :

Weir discharge coefficient (dimensionless)

C int :

Canopy storage parameter (L)

\(\hat{C}{}_{k}\) :

Concentration for species k vector for the transport equation

\(C_{\text{B}}^{k}\) :

Specified concentration of solute k at the boundary (M/L3)

\(C_{\text{C}}^{*k}\) :

Solute concentration of component k of the sources (or sinks) within the channel domain (M/L3)

\(C_{\text{G}}^{*k}\) :

Solute concentration of component k of the sources (or sinks) within the subsurface domain (M/L3)

\(C_{{{\text{J}}^{+}}/{{\text{I}}^{-}}}^{k}\) :

Directionally dependent concentration of component k in domain J, if v IJ is positive, in domain I if v IJ is negative (M/L3)

\(C_{\text{O}}^{*k}\) :

Solute concentration of component k of the sources (or sinks) within the overland domain (M/L3)

\(C_{\text{O}}^{i}\) :

Reference solute concentration of species i (M/L3) corresponding to Δo and : o

\(C_{\text{S}}^{i}\) :

Solute concentration of species i (M/L3) corresponding to \(\rho_{\text{S}}^{i}\) and \(\mu_{\text{S}}^{i}\)

\(C_{\text{s}}^{k}\) :

Concentration of component k adsorbed to the soil (M/Msoil)

\(D_{\text{d}}^{k}\) :

Molecular diffusion coefficient for component k (L2/T)

\(D_{\text{IJ}}^{k}\) :

Effective dispersion coefficient of component k between domains I and J (L2/T)

\(D_{ij}^{k}\) :

Apparent hydrodynamic dispersion tensor of component k (L2/T)

D ijB :

Dispersion coefficient tensor at the boundary (L2/T)

d :

Flow depth (L)

d C :

Depth of channel flow (L)

d O :

Depth of overland flow (L)

E can :

Canopy evaporation (L/T)

E P :

Reference evapotranspiration (L/T)

F F :

Forcing vector for the flow equation

F T :

Forcing vector for the transport equation

f Str :

Structure discharge per unit length (L2/T)

g :

Gravitation acceleration (L/T2)

H :

Specified hydraulic head at the boundary at x iB (L)

h :

Reference hydraulic head (or equivalent freshwater head) (L) = \(\frac{p}{{{\rho }_{o}}g}\,+\,{{x}_{3}}\)

h :

Overland hydraulic head or water surface elevation (L) = d O + z LS

h :

Hydraulic head or water surface elevation of the channel (L) = d C + z C

\(\hat{h}\) :

Hydraulic head vector for the flow equation

h C :

Head in the channel domain (L)

h d :

Downstream head between the two systems (L)

h G :

Head in the subsurface domain (L)

h O :

Head in the overland domain (L)

h u :

Upstream head between the channel and overland domains (L)

LAI:

Leaf area index (dimensionless)

L R :

Effective root length (L)

l UStr :

Upstream reference location of the structure (L)

l DStr :

Downstream reference location of the structure (L)

K :

Leakance (1/T)

K C :

Conductance term along the length of the channel (L3/T)

K ij :

Hydraulic conductivity or conductance (L/T) in Eqs. (2.1), (2.5a), and (2.6a)

\(K_{ij}^{\text{G}}\) :

Hydraulic conductivity tensor (L/T) = \(\frac{{{k}_{ij}}{{\rho }_{\text{o}}}g}{{{\mu }_{\text{o}}}}\)

\(K_{ij}^{\text{O}}\) :

Overland conductance tensor (L/T)

K F :

Conductance matrix for the flow equation

\(K_{\text{GC}}^{\text{eff}}\) :

Effective leakance across the interface area between channel and subsurface (1/T)

K GO :

Leakance across the interface area between overland and subsurface (1/T)

K T :

Conductance matrix for the transport equation

k ij :

Intrinsic permeability tensor (L2)

k n :

Manning’s conversion factor (L1/3/T)

k rC :

Relative channel conductance (dimensionless)

k rG :

Relative permeability (dimensionless) which is a function of water saturation as provided by the relative permeability curve

k rGC :

Relative leakance at the interface between channel and subsurface (dimensionless)

k rGO :

Relative leakance at the interface between overland and subsurface (dimensionless)

k rO :

Relative overland conductance (dimensionless)

k Str :

Structure operation coefficient (dimensionless)

L C :

Length of channel segment (L)

l :

Length along the direction of flow (L)

\(M_{\text{B}}^{k}\) :

Dispersive mass flux of species k per unit area (M/LT)

M F :

Mass matrix for the flow equation

M T :

Mass matrix for the transport equation

\(m_{\text{IJ}}^{k}\) :

Mass influx rate per unit area from domain J to domain I of component k (M/LT)

N P :

Number of parent chemicals or solute k (dimensionless)

n C :

Manning’s roughness coefficient for channel (dimensionless)

n i :

Unit vector (dimensionless), positive inward

n ij :

Manning’s roughness coefficient tensor for overland flow (dimensionless)

n R :

Number of cells that contribute to the total root zone for each areal location (dimensionless)

n RT :

Number of cells that lie within the depth interval from 0 to L R at any areal location (dimensionless)

n s :

Number of solutes (dimensionless)

P C :

Wetted perimeter of the channel segment (L)

P P :

Precipitation rate (L/T)

p :

Fluid pressure (M/LT2)

p o :

Reference fluid pressure (M/LT2)

Q B :

Volumetric water flux per unit area (L)

Q CG :

Flux across the area of the interface from subsurface to channel (L3/T)

Q GC :

Flux across the area of the interface from channel to subsurface (L3/T)

Q GO :

Flux across the area of the interface from overland to subsurface (L3/T)

Q OC :

Flux across the total length of channel banks to/from the overland flow domain (L3/T)

Q i :

Discharge per unit width normal to the flow direction (L2/T)

Q OG :

Flux across the area of the interface from subsurface to overland (L3/T)

Q Str :

Discharge rate (L3/T) of the structure as a function of head, h

q C :

Volumetric flux per unit volume (1/T) of the overland domain and represents sources and/or sinks of water

q CO :

Flux per unit volume of channel flow domain from the overland flow domain (1/T)

q CG :

Flux per unit volume of channel flow domain from the subsurface (1/T)

q G :

Volumetric flux per unit volume (1/T) of the subsurface domain and represents sources and/or sinks of water

q GC :

Flux per unit volume of subsurface from the one-dimensional channel domain = − q CG (1/T)

q GO :

Flux per unit volume of subsurface from the two-dimensional overland flow domain (1/T)

q O :

Volumetric flux per unit volume (1/T) of the overland domain and represents sources and/or sinks of water

q OC :

Flux per unit volume of overland flow domain from channel (1/T) = –q CO

q OG :

Flux per unit volume of overland flow domain from groundwater (1/T) = –q GO

r F(z):

Root extraction function (dimensionless) which typically varies logarithmically with depth

S b :

Bed slope (dimensionless) at the zero-depth gradient boundary

S e :

Effective water saturation (dimensionless)

S G :

Degree of water saturation (dimensionless) and is determined by the moisture retention curve as a function of the pressure head

S Gr :

Residual water saturation (dimensionless)

S int :

Canopy storage (L)

\(S_{\text{int}}^{\max}\) :

Canopy storage capacity (L)

\(S_{\text{int}}^{\text{o}}\) :

Previous time step canopy storage (L)

\(S_{\text{int}}^{\text{*}}\) :

Intermediate canopy storage (L)

S O :

Equivalent sediment depth (L)

S Str :

Structure unit function (dimensionless), equals unity along the length when a hydraulic structure is present, 0 otherwise

s :

Length along the direction maximum local slope (L)

\(T_{ij}^{\text{*}}\) :

Tortuosity tensor (dimensionless)

T pI :

Rate of transpiration for computational cell I (L/T)

t :

Time (T)

V :

Magnitude of the velocity vector (L/T)

V G :

Subsurface elementary volume (L3)

V I :

Normalization volume in domain I (L3)

v IJ :

Water flow rate per unit area from domain J to domain I (L/T)

v i :

Darcy velocity along the ith direction (L/T)

v iB :

Specified fluid velocity at the boundary (M/L3)

x i :

Cartesian coordinate along the ith direction (L) with x 3 being vertically upward

x iB :

Boundary coordinates (L)

Z BANK :

Bank elevation (L) which may be at or above the overland flow surface elevation

z :

Depth coordinate from the soil surface (L) (Eq. 2.14d)

z C :

Channel bottom elevation (L)

z LS :

Land surface elevation (L)

:

Fitting parameter (1/L), (Eqs. 2.4a and 2.4b)

G :

Bulk compressibility of aquifer (L2T2/M)

:

Fitting parameter (dimensionless) (Eqs. 2.4a and 2.4b)

w :

Fluid compressibility (LT2/M)

\( I_{{CInt}}^{k}\) :

Mass transfer rate of component k between the channel and other domains (1/T)

\( I_{{GInt}}^{k}\) :

Mass transfer rate of component k between subsurface and other domains (M/LT)

\( I_{{OInt}}^{k}\) :

Mass transfer rate of component k between overland and other domains (1/T)

γ :

1–1/β (dimensionless; Eqs. 2.4a and 2.4b)

δ :

Total density factor (dimensionless) \( =\,\frac{{{\rho }_{\text{f}}}-{{\rho }_{\text{o}}}}{{{\rho }_{\text{o}}}}\)

\(\delta ({{l}_{\text{UStr}}})\) :

Kronecker delta, equals unity at the upstream location of the structure (dimensionless)

\(\delta ({{l}_{\text{DStr}}})\) :

Kronecker delta, equals unity at the downstream reference location of the structure (dimensionless), zero elsewhere

ζ :

Distance along submerged channel cross section (L)

θ an :

Moisture content at anoxic limit (dimensionless)

2 C :

Effective porosity in the channel domain (dimensionless)

θ C :

Channel porosity (dimensionless)

θ e1 :

Moisture content at the end of the energy-limiting stage (above which full evaporation can occur; dimensionless)

θ e2 :

Limiting moisture content below which evaporation is zero (dimensionless)

2 eG :

Effective porosity in groundwater domain (dimensionless)

θ fc :

Moisture content at field capacity (dimensionless)

θ G :

Subsurface porosity (dimensionless)

θ O :

Overland porosity (dimensionless)

2 C :

Channel porosity (dimensionless)

θ o :

Moisture content at oxic limit (dimensionless)

θ wp :

Moisture content at wilting point (dimensionless)

\(g_{s}^{k}\) :

First-order decay coefficients for component k in soil (1/T)

\(g_{w}^{k}\) :

First-order decay coefficients for component k in water (1/T)

μ f :

Fluid dynamic viscosity (M/LT)

: o :

Reference fluid dynamic viscosity (M/LT) corresponding to \(C_{\text{o}}^{i}\)

\(\mu_{\text{S}}^{i}\) :

Fluid dynamic viscosity of species i (M/LT) corresponding to \(C_{\text{S}}^{i}\)

> kj :

Fraction of parent component j transforming into component k (dimensionless)

\(\rho_{\text{B}}^{\text{C}}\) :

Bulk density of sediment in the channel domain (M/L3)

\(\rho_{\text{B}}^{\text{G}}\) :

Bulk density of soil in the subsurface domain (M/L3)

\(\rho_{\text{B}}^{\text{O}}\) :

Bulk density of sediment in the overland domain (M/L3)

ρ f :

Fluid density (M/L3)

ρ o :

Reference fluid density (M/L3)

Δo :

Reference fluid density (M/L3) corresponding to \(C_{\text{o}}^{i}\)

\(\rho_{\text{S}}^{i}\) :

Fluid density of species i (M/L3) corresponding to \(C_{\text{S}}^{i}\)

P :

Pressure head (L)= p/(Δo g)

References

  1. Rosegrant, M. W., & Cai, X. (2002). Global water demand and supply projections part 2: Results and prospects to 2025. Water International, 27(2), 170–182.

    Article  Google Scholar 

  2. Loucks, D. P. (1996). Surface water resource systems. In L. W. Mays (Ed.), Water resources handbook (pp. 15.3-15.44). New York: McGraw-Hill.

    Google Scholar 

  3. Freeze, R. A., & Harlan, R. L. (1969). Blueprint of a physically-based, digitally simulated hydrologic response model. Journal of Hydrology, 9, 237–258.

    Article  Google Scholar 

  4. Spanoudaki, K., Nanou, A., Stamou, A. I., Christodoulou, G., Sparks, T., Bockelmann, B., & Falconer, R. A. (2005). Integrated surface water-groundwater modelling. Global NEST Journal, 7(3), 281–295.

    Google Scholar 

  5. Freeze, R. A. (1972). Role of subsurface flow in generating surface runoff: 1. Base flow contribution to channel flow. Water Resources Research, 8(3), 609–623.

    Article  Google Scholar 

  6. Langevin, C., Swain, E., & Melinda, W. (2005). Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary. Journal of Hydrology, 314, 212–234.

    Article  Google Scholar 

  7. Swain, E. D., & Wexler, E. J. (1996). A coupled surface-water and ground-water flow model (Modbranch) for simulation of stream-aquifer interaction. Techniques of Water-Resources Investigations of the United States Geological Survey Book 6, Chapter A6.

    Google Scholar 

  8. Bradford, S. F., & Katopodes, N. D. (1998). Nonhydrostatic model for surface irrigation. Journal of Irrigation and Drainage Engineering, 124(4), 200–212.

    Article  Google Scholar 

  9. VanderKwaak, J. E. (1999). Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  10. Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27, 361–382.

    Article  Google Scholar 

  11. Kumar, M., Duffy, C. J., & Salvage, K. M. (2009). A second order accurate, finite volume based, integrated hydrologic modeling (FIHM) framework for simulation of surface and subsurface flow. Vadose Zone Journal. doi:10.2136/vzj2009.0014.

    Google Scholar 

  12. Khambhammettu, P., Kool, J., Tsou, M.-S., Huyakorn, P. S., Guvanasen, V., & Beach, M. (2009). Modeling the integrated surface-water groundwater interactions in West-Central Florida, USA. The International Symposium on Efficient Groundwater Resources Management. The Challenge of Quality and Quantity for Sustainable Future, Bangkok, Thailand, February 16-21, 2009.

    Google Scholar 

  13. Barr, A., & Barron, O. (2009). Application of a coupled surface water-groundwater model to evaluate environmental conditions in the Southern River catchment. Commonwealth Scientific and Industrial Research Organisation: Water for a Healthy Country National Research Flagship, Australia.

    Google Scholar 

  14. Guvanasen, V., Wei, X. Y., Huang, D., Shinde, D., & Price, R. (2011). Application of MODHMS to simulate integrated water flow and phosphorous transport in a highly interactive surface water groundwater system along the eastern boundary of the Everglades National Park, Florida. MODFLOW and More 2011: Integrated Hydrologic Modeling Conference. The Colorado School of Mines, Golden, Colorado, USA. June 5-8, 2011.

    Google Scholar 

  15. Huang, G., & Yeh, G.-T. (2012). Integrated modeling of groundwater and surface water interactions in a manmade wetland. Terrestrial, Atmospheric and Oceanic Sciences, 23(5), 501–511.

    Article  Google Scholar 

  16. Panday, S., & Huyakorn, P. S. (2008). MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equation and numerical techniques for environmental evaluations. Vadose Zone Journal, 7(2), 610–631.

    Article  Google Scholar 

  17. Zhang, Q., & Werner, A. D. (2012). Integrated surface-subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resources Management, 23(11), 2189–2204.

    Article  Google Scholar 

  18. Bear, J. (1972). Dynamics of fluids in porous media (p. 764). New York: Elsevier.

    Google Scholar 

  19. Bear, J. (1979). Hydraulics of groundwater (p. 569). New York: McGraw-Hill.

    Google Scholar 

  20. Eagleson, P. S. (1969). Dynamic hydrology (p. 462). New York: McGraw-Hill.

    Google Scholar 

  21. Viessman, W., & Lewis, G. (1996). Introduction to hydrology (p. 760). New York: HarperCollins.

    Google Scholar 

  22. Guvanasen, V., & Chan, T. (2000). A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 37, 89–106.

    Article  Google Scholar 

  23. van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  24. Guymon, G. L. (1994). Unsaturated zone hydrology (p. 210). New Jersey: Prentice Hall.

    Google Scholar 

  25. Wu, Y. S., Huyakorn, P. S., & Park, N. S. (1994). A vertical equilibrium model for assessing nonaqueous phase liquid contamination and remediation of groundwater systems. Water Resources Research, 30, 903–912.

    Article  CAS  Google Scholar 

  26. Huyakorn, P. S., Panday, S., & Wu, Y. S. (1994). A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media: 1. Formulation. Journal of Contaminant Hydrology, 16, 109–130.

    Article  CAS  Google Scholar 

  27. Gottardi, G., & Venutelli, M. (1993). A control-volume finite-element model for two-dimensional overland flow. Advances in Water Resources, 16, 277–284.

    Article  Google Scholar 

  28. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology (p. 572). New York: McGraw-Hill.

    Google Scholar 

  29. Chow, V. T. (1959). Open-channel hydraulics (p. 680). New York: McGraw-Hill.

    Google Scholar 

  30. Scheidegger, A. E. (1961). General theory of dispersion in porous media. Journal of Geophysical Research, 66, 3273–3278.

    Article  Google Scholar 

  31. Roberson, J. A., & Crowe, C. T. (1985). Engineering fluid mechanics (3rd edn., p. 503). Boston: Houghton Mifflin.

    Google Scholar 

  32. HydroGeoLogic, Inc. (2012). MODHMS-A MODFLOW-based hydrologic modeling system. Documentation and user’s guide. Reston, Virginia: HydroGeoLogic, Inc.

    Google Scholar 

  33. Kristensen, K. J., & Jensen, S. E. (1975). A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology, 6, 170–188.

    Google Scholar 

  34. Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6), 1665–1679.

    Article  Google Scholar 

  35. Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107, 1–27.

    Article  Google Scholar 

  36. Senarath, S. U. S., Ogden, F. L., Downer, C. W., & Sharif, H. O. (2000). On the calibration and verification of two-dimensional, distributed, hortonian, continuous watershed models. Water Resources Research, 36(6), 1495–1510.

    Article  Google Scholar 

  37. Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. New York: Wiley.

    Google Scholar 

  38. Woolhiser, D. A., Smith, R. E., & Giraldez, J.-V. (1997). Effects of spatial variability of saturated hydraulic conductivity on hortonian overland flow. Water Resources Research, 32(3), 671–678.

    Article  Google Scholar 

  39. McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground water flow model. United States Geological Survey Open File Report 83-875. Washington, DC.

    Google Scholar 

  40. Graham, N., & Refsgaard, A. (2001). MIKE SHE: A distributed, physically based modeling system for surface water/groundwater interactions. In Proceedings of “MODLFOW 2001 and other modeling Odysseys,” Golden, Colorado, USA. pp. 321–327.

    Google Scholar 

  41. Panday, P., Brown, N., Foreman, T., Bedekar, V., Kaur, J., & Huyakorn, P.S. (2009). Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal. doi:10.2136/vzj2009.0020.

    Google Scholar 

  42. Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resource Research, 27(7), 1483–1496.

    Article  Google Scholar 

  43. Huyakorn, P. S., & Pinder, G. F. (1983). Computational methods in subsurface flow (p. 473). London: Academic.

    Google Scholar 

  44. Huyakorn, P. S., Springer, E. P., Guvanasen, V., & Wadsworth, T. D. (1986). A three dimensional finite element model for simulating water flow in variably saturated porous media. Water Resources Research, 22(12), 1790–1808.

    Article  Google Scholar 

  45. Vinsome, P. K. W. (1976). Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of Society of Petroleum Engineers Symposium on Numerical Simulation of Reservoir Performance, Los Angeles, California, USA.

    Google Scholar 

  46. van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631–644.

    Article  Google Scholar 

  47. Forsyth, P. A. (1993). MATB user’s guide iterative sparse matrix solver for block matrices. Canada: Department of Computer Science University of Waterloo.

    Google Scholar 

  48. Yeh, G. T., & Huang, G. (2003). A numerical model to simulate water flow in watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: Version 1.5). Orlando, Florida: Department of Civil and Environmental Engineering, University of Central Florida.

    Google Scholar 

  49. Yeh, G. T., Huang, G., Cheng, H. P., Zhang, F., Lin, H. C., Edris, E., & Richards, D. (2006). A first principle, physics-based watershed model: WASH123D. In: V. P. Singh & D. K. Frevert (Eds.), Watershed models. Boca Raton: CRC.

    Google Scholar 

  50. Therrien, R., McLaren, R. G., & Sudicky, E. A. (2007). Hydrogeosphere-a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Canada: Groundwater Simulations Group, University of Waterloo.

    Google Scholar 

  51. Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources, 29, 945–958.

    Article  Google Scholar 

  52. Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling (p. 381). San Diego: Academic.

    Google Scholar 

  53. Poeter, E. P., & Hill, M. C. (1998). Documentation of UCODE: A computer code for universal inverse modeling. United States Geological Survey Water Resources Investigations Report 98-4080, Washington, DC.

    Google Scholar 

  54. Doherty, J. (2000). PEST, model-independent parameter estimation. Australia: Watermark Numerical Computing.

    Google Scholar 

  55. Duan, Q., Gupta, V. K., & Sorooshian, S. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28, 1015–1031.

    Article  Google Scholar 

  56. Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resources Research, 39, 1201–1218.

    Google Scholar 

  57. Schoups, G., Lee Addams, C., & Gorelick, S. M. (2005). Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrology and Earth System Sciences, 9, 549–568.

    Article  Google Scholar 

  58. Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39, 1214–1232.

    Google Scholar 

  59. Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., & Turcotte, R. (Eds.). (2003). Calibration of watershed models. Water science and application 6 (p. 345). Washington, DC: American Geophysical Union.

    Google Scholar 

  60. Vrugt, J. A., Nuallain, B. O., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32, 1139–1155.

    Article  CAS  Google Scholar 

  61. Schreuder, W. A. (2009). Running BeoPEST. In Proceedings of the 1st PEST conference, Potomac, Maryland, USA, November 1-3, 2009.

    Google Scholar 

  62. Hunt, R. J., Luchette, J., Schreuder, W. A., Rumbaugh, J. O., Doherty, J., Tonkin, M. J., & Rumbaugh, D. B. (2010). Using a cloud to replenish parched groundwater modeling efforts. Ground Water, 48(3), 360–365.

    Article  CAS  Google Scholar 

  63. Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration (p. 455). New Jersey: Wiley.

    Book  Google Scholar 

  64. Nash, J. E., & Sutcliffe. J. V. (1970). River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  65. Smith, M. B., Laurine, D. B., Koren, V. I., Reed, S. M., & Zhang, Z. (2003). Hydrologic model calibration strategy accounting for model structure. In: Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. Turcotte (Eds.), Calibration of watershed models, Water science and application 6 (p. 133–152). Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  66. Beach, M. H. (2006). Southern district ground-water flow model, version 2.0. Hydrologic Evaluation Section, Resource Conservation and Development Department, Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  67. Environmental Simulations, Inc. (2004). Development of the district wide regulation model. Report submitted to the Southwest Florida water Management District, Brooksville, Florida.

    Google Scholar 

  68. HydroGeoLogic, Inc. (2011). Peace river integrated modeling project (PRIM) phase IV: Basin-wide model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  69. HydroGeoLogic, Inc. (2009). Peace river integrated modeling project (PRIM) phase III: Saddle creek basin integrated model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida.

    Google Scholar 

  70. HydroGeoLogic, Inc. (2012). Peace river integrated modeling project (PRIM) phase V: Predictive model simulations. Report submitted to The Southwest Florida Water Management District.

    Google Scholar 

  71. U.S. Army Corps of Engineers (USACE). (2002). Central and Southern Florida Project, Canal-111 South Dade County, Florida-S-332D detention area pre-operations and start-up monitoring data review report. U.S. Army Corps of Engineers, Jacksonville District, Jacksonville, Florida.

    Google Scholar 

  72. Cunningham, K. J., Sukop, M. C., Huang, H., Alvarez, P. F., Curran, H. A., Renken, R. A., & Dixon, J. F. (2009). Prominence of ichnologically influenced macroporosity in the karst system of biscayne aquifer: Stratiform “Super-K” zones. Geological Society of America Bulletin, 121(1/2), 164–180.

    Google Scholar 

  73. Evans, R. A. (2000). Calibration and verification of the MODBRANCH numerical model of South Dade County, Florida. U. S. Army Corps of Engineers, Jacksonville District, February, 2000.

    Google Scholar 

  74. Fish, J. E., & Stewart, M. (1991). Hydrogeology of the surficial aquifer system, Dade County, Florida. U.S. Geological Survey Water-Resources Investigations Report 90-4108, 56 pp.

    Google Scholar 

  75. Swain, E. D., Wolfert, M. A., Bales, J. D., & Goodwin, C. R. (2004). Two-dimensional hydrodynamic simulation of surface-water flow and transport to Florida Bay through the Southern Inland and Coastal Systems (SICS). U.S. Geological Survey Water-Resources Investigations Report 03-4287. 56 pp.

    Google Scholar 

  76. HydroGeoLogic, Inc. (2010) Surface water groundwater flow and transport model development for the eastern boundary of Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida.

    Google Scholar 

  77. South Florida Water Management District. (1997). Documentation for the South Florida water management model. Hydrologic Systems Modeling Division, Planning Department, South Florida Water Management District, West Palm Beach, Florida.

    Google Scholar 

  78. Geiser, E., Price, R., Scinto, L., & Trexler, J. (2008). Phosphorus retention and subsurface movement through the S-332 detention basins on the eastern boundary of the Everglades National Park. Florida International University, Report submitted to National Park Services, Homestead, Florida.

    Google Scholar 

  79. Pollman, C. D., Landing, W. M., Perry, J. J., & Fitzpatrick, T. (2002). Wet deposition of phosphorus in Florida. Atmospheric Environment, 36, 2309–2318.

    Article  CAS  Google Scholar 

  80. HydroGeoLogic, Inc. (2006). Conceptual and numerical model development using MODHMS for marsh driven operations at S −332 detention basins, prepared for: South Florida Ecosystem Office Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varut Guvanasen PhD,PE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guvanasen, V., Huyakorn, P. (2015). Integrated Simulation of Interactive Surface-Water and Groundwater Systems. In: Yang, C., Wang, L. (eds) Advances in Water Resources Engineering. Handbook of Environmental Engineering, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-11023-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11023-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11022-6

  • Online ISBN: 978-3-319-11023-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation