Leptin Therapy as a Substitute for Insulin Replacement in Experimental Models of Diabetes: Clinical Implications in Humans

  • Chapter
  • First Online:
Leptin
  • 1392 Accesses

Abstract

Multidisciplinary approaches undertaken to elucidate the control of leptin secretion from white adipose tissue and its neurobiology in energy homeostasis has serendipitously uncovered the obligatory participation of leptin via the hypothalamus in glucose homeostasis, independent of its well-known role in appetite control. The salient features of this discovery are the following: Glucose homeostasis, sustained through the operation of a tight feedback relationship between pancreatic insulin and adipocyte leptin, is mediated through an interconnected network of leptin receptor producing neurons in the hypothalamus that relays afferent regulatory information along distinct pathways to peripheral targets involved in insulin secretion and glucose metabolism. A break down in optimal leptin communication with these hypothalamic targets due to leptin insufficiency resulting from either leptinopenia or hypoleptinemia after loss of pancreatic beta cells, or evoked by hyperleptinemia associated attenuated leptin entry across the blood–brain barrier, underlies diabetes type 1(T1DM) and diabetes type 2 (T2DM). Leptin replenishment by injection or gene therapy, systemically or directly into the hypothalamus, stably reinstated euglycemia in all rodent paradigms of T1DM. In contrast, leptin delivery only directly to hypothalmic targets either by central infusion or gene therapy reestablished glucose homeostasis in obese and aging T2DM animal paradigms. Clinical evaluations along similar lines to establish glucose homeostasis for extended periods in response to leptin delivered systemically was also successful in leptinopenic congenital or acquired lipodystrophic subjects. Evidently, leptin therapy is a new treatment modality with the potential to replace insulin monotherapy for T1DM when delivered either systemically or centrally, but for T2DM only when delivered centrally. The current global rise in the incidence of diabetes underscores an urgent need for rigorous clinical testing of leptin to determine the optimal delivery procedure and long-term consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haymaker W, Anderson E, Nauta WJH, editors. The hypothalamus. USA: Charles C Thomas; 1969.

    Google Scholar 

  2. Brobeck JR. Mechanisms of the development of obesity in animals with hypothalmic lesions. Physiol Rev. 1946;26:123–46.

    Google Scholar 

  3. Bray GA. Historical framework for the development of ideas about obesity. In Bray, Ga, Bouchard V, James WPT (eds) Handbook of obesity 1998:1–29, Marcel Dekker Inc., New York.

    Google Scholar 

  4. Banting FG, Best CH. Pancreatic extracts 1922. J Lab Clin Med. 1990;115:254–72.

    CAS  PubMed  Google Scholar 

  5. Kalra SP. Should leptin replace insulin as a monotherapy for diabetes 1 and 2? Indian J Endocrinol Metab. 2013;17 Suppl 1:S23–4.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20:68–100.

    CAS  PubMed  Google Scholar 

  7. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  CAS  PubMed  Google Scholar 

  8. Coleman DL. Effects of parabiosis of obese with diabetics and normal mice. Diabetologia. 1973;9:894–8.

    Google Scholar 

  9. Coleman DL. Obese and diabetics: two mutant genes causing diabetes-obesity syndromes. Diabetologia. 1978;14:141–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  11. Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature. 1997;389:374–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kalra SP. A case for new therapy for diabetes, is it leptin? Indian J Endocrinol Metab. 2012;16 Suppl 3:S525–8.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin–glucose axis. Front Neurosci. 2013;7:1–12.

    Article  Google Scholar 

  14. Marino JS, Xu Y, Hill W. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab. 2011;22:275–85.

    CAS  PubMed  Google Scholar 

  15. Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP. Central leptin differentially modulates ultradian secretory patterns of insulin, leptin and ghrelin independent of effects on food intake and body weight. Peptides. 2005;26:2559–66.

    Article  CAS  PubMed  Google Scholar 

  16. Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP. High fat diet-induced ultradian leptin and insulin hypersecretion and ghrelin is absent in obesity-resistant rats. Obes Res. 2005;113:991–9.

    Article  Google Scholar 

  17. Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides. 2004;38:201–11.

    Article  CAS  PubMed  Google Scholar 

  18. Kalra SP. Central leptin gene therapy ameliorates diabetes type 1 and 2 through two independent hypothalmic relays a benefit beyond weight and appetite regulation. Peptides. 2009;30:1957–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kalra SP. Central leptin insufficiency syndrome: an interactive etiology for obesity, metabolic and neural diseases and for designing new therapeutic interventions. Peptides. 2008;29:127–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Moon H-S, Dalamaga M, Kim S, Polyzos SA, Hamnvik O-P, Magkos F, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev. 2013;34:377–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept. 2003;111:1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Dalamaga M, Chou SH, Shields K, Papageorgious P, Polyzos SA, Mantzoros CH. Leptin at the intersection of neuroendocrinology and metabolism: Current evidence and therapeutic perspectives. Cell Metab. 2013;8:29–43.

    Article  Google Scholar 

  23. Boghossian S, Dube MG, Torto R, Kalra PS, Kalra SP. Hypothalmic clamp on insulin release by leptin-transgene expression. Peptides. 2006;27:3245–54.

    Article  CAS  PubMed  Google Scholar 

  24. Cummings BP. Leptin therapy in type 2 diabetes. Diabetes Obes Metab. 2013;15:1–6. Blackwell Publishing Ltd.

    Article  Google Scholar 

  25. Bagnasco M, Kalra PS, Kalra SP. Plasma leptin levels are pulsatile in adult rats: effects of gonadectomy. Neuroendocrinology. 2002;75:257–63.

    Article  CAS  PubMed  Google Scholar 

  26. Dhillon H, Kalra SP, Prima V, et al. Central leptin gene therapy suppresses body weight gain, adiposity and serum insulin without affecting food consumption in normal rats: a long-term study. Regul Pept. 2001;99:69–77.

    Article  CAS  PubMed  Google Scholar 

  27. Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP. Central leptin gene therapy blocks high fat diet-induced weight gain, hyperleptinemia and hyperinsulinemia: effects on serum ghrelin levels. Diabetes. 2002;51:1729–36.

    Article  CAS  PubMed  Google Scholar 

  28. Dube MG, Torto R, Kalra SP. Increased leptin expression selectively in the hypothalamus suppresses inflammatory markers CRP and IL-6 in leptin-deficient diabetic obese mice. Peptides. 2008;29:593–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bagnasco M, Dube MG, Katz A, Kalra PS, Kalra SP. Leptin expression in hypothalamic PVN reverses dietary obesity and hyperinsulinemia but stimulates ghrelin. Obes Res. 2003;11:463–70.

    Article  Google Scholar 

  30. Kalra SP, Kalra PS. Viral vectors as probes to decipher brain circuitry for weight control. Trends Endocrinol Metab. 2001;12:377–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kalra SP. Circumventing leptin resistance for weight control. Proc Natl Acad Sci U S A. 2001;9:84279–81.

    Google Scholar 

  32. Kalra SP, Kalra PS. Gene transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life-expectancy. Trends Pharmacol Sci. 2005;26:488–95.

    Article  CAS  PubMed  Google Scholar 

  33. Farooqi IS, O’Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr. 2009;89:980S–4.

    Article  CAS  PubMed  Google Scholar 

  34. Kastin AJ, Pan W, Maness LM, Koletsky RJ, Ernsberger P. Decreased transport of leptin across the blood-brain barrier in rats lacking the short form of the leptin receptor. Peptides. 1999;20:1449–53.

    Article  CAS  PubMed  Google Scholar 

  35. Kastin AJ, Pan W. Dynamic regulation of leptin entry into brain by the blood-brain barrier. Regul Pept. 2000;92:37–43.

    Article  CAS  PubMed  Google Scholar 

  36. Banks WA, DiPalma CR, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity. Peptides. 1999;20:1341–5.

    Article  CAS  PubMed  Google Scholar 

  37. Banks WA, Farr SA, Morley JE. The effects of high fat diets on the blood-brain barrier transport of leptin: failure or adaptation? Physiol Behav. 2006;88:244–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kurrimbux D, Gaffen Z, Farrell CL, Martin D, Thomas SA. The involvement of the blood-brain and the blood-cerebrospinal fluid barriers in the distribution of leptin into and out of the rat brain. Neuroscience. 2004;123:527–36.

    Article  CAS  PubMed  Google Scholar 

  39. Ziylan YZ, Baltaci AK, Mogulkoc R. Leptin transport in the central nervous system. Cell Biochem Funct. 2009;27:63–70.

    Article  CAS  PubMed  Google Scholar 

  40. Miyanaga F, Ogawa Y, Ebihara K, Hidaka S, Tanaka T, Hayashi S, et al. Leptin as an adjunct of insulin therapy in insulin-deficient diabetes. Diabetologia. 2003;46:1329–37.

    Article  CAS  PubMed  Google Scholar 

  41. Burguera B, Couce ME, Curran GL, Jensen MD, Lloyd RV, Cleary MP, et al. Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats. Diabetes. 2000;49:1219–23.

    Article  CAS  PubMed  Google Scholar 

  42. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159–61.

    Article  CAS  PubMed  Google Scholar 

  43. Kalra SP. Pivotal role of leptin-hypothalamus signaling in the etiology of diabetes uncovered by gene therapy; a new therapeutic intervention? Gene Therapy. 2011;18:319–29.

    Article  CAS  PubMed  Google Scholar 

  44. Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al. Leptin therapy in insulin-deficient type 1 diabetes. Proc Natl Acad Sci U S A. 2010;107:4813–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Michael J, Krashes I, Bhavik P, Shah I, Joseph C, Madara I, et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature. 2014;507:238–42.

    Article  Google Scholar 

  46. Minokoshi Y, Haque MS, Shimazu T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes. 1999;48:287–91.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest. 2001;108:1113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kalra SP, Kalra PS. Neuroendocrine update of energy homeostasis. Update and insight. Prog Brain Res. Martini L (Ed) 2010:181;17–33

    Google Scholar 

  49. Bartness TJ, Kay Song C, Shi H, Bowers RR, Foster MT. Brain-adipose tissue cross talk. Proc Nutr Soc. 2005;64:53–64.

    Article  CAS  PubMed  Google Scholar 

  50. Bamshad M, Song CK, Bartness TJ. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol. 1999;276(6 Pt 2):R1569–78.

    CAS  PubMed  Google Scholar 

  51. Wang ZW, Zhou YT, Kakuma T, Lee Y, Higa M, Kalra SP, et al. Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc Natl Acad Sci U S A. 1999;96:10373–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology. 2006;147:1140–7.

    Article  CAS  PubMed  Google Scholar 

  53. Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:808–20.

    Article  PubMed  Google Scholar 

  54. Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 2001;431:405–23.

    Article  CAS  PubMed  Google Scholar 

  55. Fujikawa T, Berglund ED, Patel VR, Ramadori G, Vianna CR, Vonga L, et al. Leptin engages a hypothalmic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 2013;18:431–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Koyama K, Shimabukuro M, Chen G, Wang MY, Lee Y, Kalra PS, et al. Resistance to adenovirally induced hyperleptinemia in rats: comparison of ventromedial hypothalamic lesions and mutated leptin receptors. J Clin Invest. 1998;102:728–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Fujikawa T, Coppari R. Hypothalamic-mediated control of glucose balance in the presence and absence of insulin. Aging. 2014;6:92–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ueno N, Inui A, Kalra SP, Kalra PS. Leptin transgene expression in the hypothalamus enforces euglycemia in diabetic, insulin-deficient nonobese Akita mice and leptindeficient obese ob/ob mice. Peptides. 2006;27:2332–42.

    Article  CAS  PubMed  Google Scholar 

  59. Kojima S, Asakawa A, Amitani H, Sakoguchi T, Ueno N, Inui A, et al. Central leptin gene therapy, a substitute for insulin therapy to ameliorate hyperglycemia and hyperphagia, and promote survival in insulin-deficient diabetic mice. Peptides. 2009;30:962–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Naure. 1999;401:73–6.

    CAS  Google Scholar 

  61. Chinookoswong N, Wang JL, Shi ZQ. Leptin restores euglycemia and normalizes glucose turnover in insulin- deficient diabetes in the rat. Diabetes. 1999;48:1487–92.

    Article  CAS  PubMed  Google Scholar 

  62. Masuzaki H, Ogawa Y, Aizawa-Abe M, Hosoda K, Suga J, Ebihara K, et al. Glucose metabolism and leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes. Diabetes. 1999;48:1615–22.

    Article  CAS  PubMed  Google Scholar 

  63. Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–94.

    Article  CAS  PubMed  Google Scholar 

  64. Larcher F, Del Rio M, Serrano F, Segovia JC, Ramirez A, Meana A, et al. A cutaneous gene therapy approach to human leptin deficiencies, correction of the marine ob/phenotype using leptin-targeted keratinocytes grafts. FASEB. 2001;15:1529–38.

    Article  CAS  Google Scholar 

  65. Keen-Rhinehart E, Kalra SP, Kalra PS. AAV mediated leptin receptor installation improves energy balance and the reproductive status of obese female Koletsky rats. Peptides. 2005;26:2567–78.

    Article  CAS  PubMed  Google Scholar 

  66. Park JY, Chong AY, Cochran EK, Haller MJ, Schatz DA, Gordon P. Type 1diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effects of long-term leptin therapy. J Clin Endocrinol Metab. 2008;93:26–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, et al. Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology. 2005;146:4024–35.

    Article  CAS  PubMed  Google Scholar 

  68. Masuzaki H, Ogawa Y, Aizawa-Abe M, Hosoda K, Suga J, Ebihara K, et al. Glucose metabolism and leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes. Diabetes. 1999;48:1613–22.

    Article  Google Scholar 

  69. Boghossian S, Ueno N, Dube MG, Kalra P, Kalra S. Leptin gene transfer in the hypothalamus enhances longevity in adult monogenic mutant mice in the absence of circulating leptin. Neurobiol Aging. 2007;28:1594–604.

    Article  CAS  PubMed  Google Scholar 

  70. Murphy JE, Zhou S, Giese K, Williams LT, Escobedo JA, Dwarki VJ. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin. Proc Natl Acad Sci U S A. 1997;94:13921–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Muzzin P, Eisensmith RC, Copeland KC, Woo SL. Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci U S A. 1996;93:14804–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ogawa Y, Masuzaki H, Hosoda K, Aizawa-Abe M, Suga J, Suda M, et al. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes. 1999;48:1822–9.

    Article  CAS  PubMed  Google Scholar 

  73. Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Ann Rev Med. 2005;56:443–58.

    Article  CAS  PubMed  Google Scholar 

  74. Cummings PB, Bettaleb A, Graham JL, Stanhope KL, Dill R, Morton JL, et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetics UCD-T2DM rats. PNAS. 2011;108:14670–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Naito M, Fujikura J, Ebihara K, Miyanaga I, Yokoi H, Kusakabe T, et al. Therapeutic impact of leptin on diabetes, diabetic complications and longevity in insulin deficient diabetic mice. Diabetes. 2011;60(9):2265–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bagnasco M, Dube MG, Kalra PS, Kalra SP. Evidence for the existence of distinct central appetite and energy expenditure pathways and stimulation of ghrelin as revealed by hypothalamic site-specific leptin gene therapy. Endocrinology. 2002;143:4409–21.

    Article  CAS  PubMed  Google Scholar 

  77. Hidaka S, Yoshimatsu H, Kondou S, Oka K, Tsuruta Y, Sakino H, et al. Hypoleptinemia, but not hypoinsulinemia, induces hyperphagia in streptozotocin-induced diabetic rats. J Neurochem. 2001;77:993–1000.

    Article  CAS  PubMed  Google Scholar 

  78. Hidaka S, Yoshimatsu H, Kondou S, Tsuruta Y, Oka K, Noguchi H, et al. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J. 2002;16:509–18.

    Article  CAS  PubMed  Google Scholar 

  79. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.

    Article  CAS  PubMed  Google Scholar 

  80. Lin CY, Higginbotham DA, Judd RL, White BD. Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2002;282:E1084–91.

    CAS  PubMed  Google Scholar 

  81. Shi ZQ, Nelson A, Whitcomb L, Wang J, Cohen AM. Intracerebroventicular administration of leptin markedly enhances insulin sensitivity and systemic glucose utilization in conscious rats. Metabolism. 1998;47:1274–80.

    Article  CAS  PubMed  Google Scholar 

  82. Wang JL, Chinookoswong N, Scully S, Qi M, Shi ZQ. Differential effects of leptin in regulation of tissue glucose utilization in vivo. Endocrinology. 1999;140:2117–24.

    CAS  PubMed  Google Scholar 

  83. Ebihara K, Kusakabe T, Hirata M, et al. Efficacy and safety of leptin-replacement therapy and posible mechanisms of leptin actions in patients with generalizad lipodystrophy. J Clin Endocrinol Metab. 2007;92:532–41.

    Article  CAS  PubMed  Google Scholar 

  84. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    Article  CAS  PubMed  Google Scholar 

  85. Scully T. Diabetes in numbers. Nature. 2012;485:S2–376.

    Article  CAS  PubMed  Google Scholar 

  86. Kastin AJ, Pan W. Intranasal leptin: blood-brain barrier bypass (BBBB) for obesity? Endocrinology. 2006;147:2086–7.

    Article  CAS  PubMed  Google Scholar 

  87. Chapman CD, Frey II WH, Craft S, Danielyan L, Hallschmid M, Schoth H, et al. Intranasal treatment of central nervous system dysfunction in human. Pharm Res. 2013;30:2475–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Harmon BT, Aly AE, Padegimas L, Sesenogulu-Laird O, Cooper MJ, Waszczak BL. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in the rat brain. Gene Therapy. 2014;21:514–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Paul Kalra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalra, S.P. (2015). Leptin Therapy as a Substitute for Insulin Replacement in Experimental Models of Diabetes: Clinical Implications in Humans. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation