Introduction to Anticancer Drugs from Marine Origin

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

The chemical and biological diversity of the marine environment is extraordinary resource for the discovery of new anticancer drugs. Recent technological and methodological advances in elucidation of structure, synthesis, and biological assay have resulted in the isolation and clinical evaluation of various novel anticancer agents from marine pipeline. To understanding the marine derived anticancer compounds are useful in pharmaceutical industry and clinical applications. The marine sponges , algae , microbes, tunicates and other species from the marine pipeline are the important sources for biological active compounds. The past decade has seen a dramatic increase in the number of preclinical anticancer lead compounds from diverse marine life enter human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: Can J Clin 61(2):69–90

    Google Scholar 

  2. Jimeno J, Faircloth G, Sousa-Faro J, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics—a journey from the sea to clinical trials. Mar Drugs 2(1):14–29

    Article  CAS  Google Scholar 

  3. Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292

    Article  CAS  Google Scholar 

  4. Venegas-Calerón M, Sayanova O, Napier JA (2010) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49(2):108–119

    Article  Google Scholar 

  5. Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4(2):333–342

    CAS  Google Scholar 

  6. Firn RD, Jones CG (2003) Natural products-a simple model to explain chemical diversity. Nat Prod Rep 20(4):382–391

    Article  CAS  Google Scholar 

  7. Schumacher M, Kelkel M, Dicato M, Diederich M (2011) Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol Adv 29(5):531–547

    Article  CAS  Google Scholar 

  8. Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8(1):47–58

    Article  CAS  Google Scholar 

  9. Dalisay DS, Morinaka BI, Skepper CK, Molinski TF (2009) A tetrachloro polyketide hexahydro-1H-isoindolone, muironolide A, from the marine sponge Phorbas sp. natural products at the nanomole scale. J Am Chem Soc 131(22):7552

    Article  CAS  Google Scholar 

  10. Proksch P, Putz A, Ortlepp S, Kjer J, Bayer M (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 9(4):475–489

    Article  CAS  Google Scholar 

  11. Kramer A (2011) Identification, bioactivity and biosynthesis of natural products from marine sponge associated fungi.

    Google Scholar 

  12. Müller WE (1998) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85(1):11–25

    Article  Google Scholar 

  13. Hooper JN, Van Soest RW (2002) Systema Porifera. A guide to the classification of sponges. Springer, Berlin

    Google Scholar 

  14. Thakur NL, Müller WE (2004) Biotechnological potential of marine sponges. Curr Sci 86(11):1506–1512

    CAS  Google Scholar 

  15. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Bio Rev 71(2):295–347

    Article  CAS  Google Scholar 

  16. Perdicaris S, Vlachogianni T, Valavanidis A (2013) Bioactive natural substances from marine sponges: new developments and prospects for future pharmaceuticals. Nat Prod Chem Res 1(3):1–8

    Article  Google Scholar 

  17. Villa FA, Gerwick L (2010) Marine natural product drug discovery: leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 32(2):228–237

    Article  CAS  Google Scholar 

  18. Alcaraz M, Paya M (2006) Marine sponge metabolites for the control of inflammatory diseases. Curr Opin Invest Drugs 7(11):974

    CAS  Google Scholar 

  19. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2008) Drug development from marine natural products. Nat Rev Drug Discovery 8(1):69–85

    Article  Google Scholar 

  20. Gordaliza M (2010) Cytotoxic terpene quinones from marine sponges. Mar Drugs 8(12):2849–2870

    Article  CAS  Google Scholar 

  21. Mayer A, Rodríguez AD, Berlinck RG, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C: Toxicol Pharmacol 153(2):191–222

    Google Scholar 

  22. Mayer A, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265

    Article  CAS  Google Scholar 

  23. Wang Y-Q, Miao Z-H (2013) Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs 11(3):903–933

    Article  CAS  Google Scholar 

  24. Bergmann W, Feeney RJ (1950) The isolation of a new thymine pentoside from sponges1. J Am Chem Soc 72(6):2809–2810

    Article  CAS  Google Scholar 

  25. Proksch P, Edrada R, Ebel R (2002) Drugs from the seas-current status and microbiological implications. Appl Microbiol Biotech 59(2–3):125–134

    CAS  Google Scholar 

  26. Schwartsmann G (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann Oncol 11(suppl 3):235–243

    Google Scholar 

  27. Essack M, Bajic VB, Archer JA (2011) Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment. Mar Drugs 9(9):1580–1606

    Article  CAS  Google Scholar 

  28. Halim H, Chunhacha P, Suwanborirux K, Chanvorachote P (2011) Anticancer and antimetastatic activities of renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res 31(1):193–201

    CAS  Google Scholar 

  29. Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, Dyshlovoy SA, Krasokhin VB, Stonik VA (2010) Monanchocidin: a new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org Lett 12(19):4292–4295

    Article  CAS  Google Scholar 

  30. Kondracki M-L, Guyot M (1987) Smenospongine: a cytotoxic and antimicrobial aminoquinone isolated from Smenospongia sp. Tetrahedron Lett 28(47):5815–5818

    Article  CAS  Google Scholar 

  31. Kong D, Yamori T, Kobayashi M, Duan H (2011) Antiproliferative and antiangiogenic activities of smenospongine, a marine sponge sesquiterpene aminoquinone. Mar Drugs 9(2):154–161

    Article  CAS  Google Scholar 

  32. Bai R, Cichacz ZA, Herald CL, Pettit GR, Hamel E (1993) Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol Pharmacol 44(4):757–766

    CAS  Google Scholar 

  33. Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, Rocha H, Morais AH, Uchoa A, Santos E (2012) A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Mar Drugs 10(4):727–743

    Article  CAS  Google Scholar 

  34. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Heteronemin, a spongean sesterterpene, inhibits TNFα-induced NF-κB activation through proteasome inhibition and induces apoptotic cell death. Biochem Pharmacol 79(4):610–622

    Article  CAS  Google Scholar 

  35. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262

    Article  CAS  Google Scholar 

  36. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18(1):1R–49R

    Article  Google Scholar 

  37. De Almeida CLF, Falc DS, Lima DM, Gedson R, Montenegro DA, Lira NS, De Athayde-Filho PF, Rodrigues LC, De Souza MdF, Barbosa-Filho JM (2011) Bioactivities from marine algae of the genus Gracilaria. Int J Mol Sci 12(7):4550–4573

    Article  CAS  Google Scholar 

  38. Holick CN, Michaud DS, Stolzenberg-Solomon R, Mayne ST, Pietinen P, Taylor PR, Virtamo J, Albanes D (2002) Dietary carotenoids, serum β-carotene, and retinol and risk of lung cancer in the Alpha-Tocopherol, Beta-Carotene cohort study. Am J Epidemiol 156(6):536–547

    Article  Google Scholar 

  39. Rock CL (2003) Carotenoid update. J Am Diet Assoc 103(4):423–425

    Article  Google Scholar 

  40. Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29(5):468–482

    Article  CAS  Google Scholar 

  41. Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Müller WE (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31(1):77–83

    Article  Google Scholar 

  42. Gerwick WH, Fenner AM (2012) Drug discovery from marine microbes. Microb Ecol 65:1–7

    Google Scholar 

  43. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    Article  CAS  Google Scholar 

  44. Sunassee SN, Davies-Coleman MT (2012) Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat Prod Rep 29(5):513–535

    Article  CAS  Google Scholar 

  45. Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48(4):410–431

    Article  CAS  Google Scholar 

  46. Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580

    Article  CAS  Google Scholar 

  47. Igarashi Y, Takagi K, Kan Y, Fujii K, Harada K-i, Furumai T, Oki T (2000) Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. II. Structure determination. J Antibiot 53(3):233–240

    Article  CAS  Google Scholar 

  48. Furumai T, Takagi K, Igarashi Y, Saito N, Oki T (2000) Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 53(3):227

    Article  CAS  Google Scholar 

  49. Kim Y-H, Shin HC, Song DW, Lee S-H, Furumai T, Park J-W, Kwon TK (2003) Arisostatins A induces apoptosis through the activation of caspase-3 and reactive oxygen species generation in AMC-HN-4 cells. Biochem Biophys Res Commun 309(2):449–456

    Article  CAS  Google Scholar 

  50. Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. Mar Biotechnol 1:419–457

    CAS  Google Scholar 

  51. García-Caballero M, Cañedo L, Fernández-Medarde A, Medina MÁ, Quesada AR (2014) The marine fungal metabolite, AD0157, inhibits angiogenesis by targeting the Akt signaling pathway. Mar Drugs 12(1):279–299

    Article  Google Scholar 

  52. Kanoh K, Kohno S, Asari T, Harada T, Katada J, Muramatsu M, Kawashima H, Sekiya H, Uno I (1997) (–)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 7(22):2847–2852

    Article  CAS  Google Scholar 

  53. Cooper EL, Mansour M, Negm H (1996) Marine invertebrate immunodefense responses: molecular and cellular approaches in tunicates. Ann Rev Fish Dis 6:133–149

    Article  Google Scholar 

  54. Rinehart KL (2000) Antitumor compounds from tunicates. Med Res Rev 20(1):1–27

    Article  CAS  Google Scholar 

  55. Delfourne E, Bontemps-Subielos N, Bastide J (2000) Structure revision of the marine pentacyclic aromatic alkaloid: cystodamine. Tetrahedron Lett 41(20):3863–3864

    Article  CAS  Google Scholar 

  56. Stonik V, Kalinin V, Avilov S (1999) Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8(2):235–248

    CAS  Google Scholar 

  57. Janakiram NB, Mohammed A, Zhang Y, Choi C-I, Woodward C, Collin P, Steele VE, Rao CV (2010) Chemopreventive effects of frondanol A5, a cucumaria frondosa extract, against rat colon carcinogenesis and inhibition of human colon cancer cell growth. Cancer Prev Res 3(1):82–91

    Article  CAS  Google Scholar 

  58. Tong Y, Zhang X, Tian F, Yi Y, Xu Q, Li L, Tong L, Lin L, Ding J (2005) Philinopside a, a novel marine derived compound possessing dual anti-angiogenic and anti-tumor effects. Int J Cancer 114(6):843–853

    Article  CAS  Google Scholar 

  59. Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, Sun P, Lin L, Ding J (2005) PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther 4(8):874–882

    Article  CAS  Google Scholar 

  60. Aminin D, Chaykina E, Agafonova I, Avilov S, Kalinin V, Stonik V (2010) Antitumor activity of the immunomodulatory lead Cumaside. Int Immunopharmacol 10(6):648–654

    Article  CAS  Google Scholar 

  61. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64 (7):907–910

    Article  CAS  Google Scholar 

  62. Bai R, Verdier-Pinard P, Gangwar S, Stessman CC, McClure KJ, Sausville EA, Pettit GR, Bates RB, Hamel E (2001) Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Mol Pharmacol 59(3):462–469

    CAS  Google Scholar 

  63. Zubia E, Ortega MJ, Salva J (2005) Natural products chemistry in marine ascidians of the genus Aplidium. Mini-Rev Org Chem 2(4):389–399

    Article  CAS  Google Scholar 

  64. Menna M, Imperatore C, D’Aniello F, Aiello A (2013) Meroterpenes from marine invertebrates: structures, occurrence, and ecological implications. Mar Drugs 11(5):1602–1643

    Article  CAS  Google Scholar 

  65. Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161(3):252–262

    Article  Google Scholar 

  66. Canedo LM, Fernández-Puentes JL, Baz JP (2000) IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 53(5):479

    Article  CAS  Google Scholar 

  67. Fernandez-Chimeno RI, Canedo L, Espliego F, Grávalos D, De La Calle F, Fernández-Puentes JL, Romero F (2000) IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 53(5):474–478

    Article  CAS  Google Scholar 

  68. Yang B, Zhou X-F, Lin X-P, Liu J, Peng Y, Yang X-W, Liu Y (2012) Cembrane diterpenes chemistry and biological properties. Curr Org Chem 16(12):1512–1539

    Article  CAS  Google Scholar 

  69. Qin S, Huang H, Guo YW (2008) A new cembranoid from the Hainan soft coral Sinularia sp. J Asian Nat Prod Res 10:1075–1079. doi:10.1080/10286020802319410

    Article  CAS  Google Scholar 

  70. Rodriguez AD, Shi JG (1998) The first cembrane-pseudopterane cycloisomerization. J Org Chem 63:420–421

    Article  CAS  Google Scholar 

  71. Sponholtz WR, Bianco MA, Gribble GW (2008) Isolation and structure determination of the cembranoid eunicin from a new genus of octocoral, Pseudoplexaura. Nat Prod Rep 22:441–448

    Google Scholar 

  72. Sawant SS, Sylvester PW, Avery MA, Desai P, Youssef DTA, El Sayed KA (2004) Bioactive rearranged and halogenated semisynthetic derivatives of the marine natural product sarcophine. J Nat Prod 67:2017–2023. doi:10.1021/np0497393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, SK., Kalimuthu, S. (2015). Introduction to Anticancer Drugs from Marine Origin. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_1

Download citation

Publish with us

Policies and ethics

Navigation