Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 404))

Abstract

This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is expected in Advanced Virgo, which is designed with so-called marginally stable recycling cavities. With such a design the detector is more sensitive to aberrations induced by thermal effects and optical defects. For instance, an inhomogeneous pattern of the refraction index of the mirrors, which can be non-axisymmetric, can cause important aberrations and must be compensated for.

  2. 2.

    Vibration isolators act as very steep low-pass filters. Therefore, the residual seismic noise transmitted to the mirrors has a spectrum that behaves as \(\sim \) \(1/f^N\) with \(N\gg 1\), looking like a “wall” limiting the sensitivity at very low frequencies.

  3. 3.

    GW analog of the standard candles.

References

  1. A. Einstein, Ann. der Phys. 49, 769 (1916)

    Article  ADS  MATH  Google Scholar 

  2. B. Abbot et al., The LIGO Scientific Collaboration. Reports on Progress in Physics 72, 076901 (2009)

    Article  ADS  Google Scholar 

  3. F. Acernese et al., The Virgo Collaboration. Class. Quantum Gravity 25, 114045 (2008)

    Google Scholar 

  4. M. Cerdonio, G. Losurdo, La, Rivista del Nuovo Cimento 8, 389–480 (2012)

    Google Scholar 

  5. H. Grote et al., The GEO600 Collaboration. Class. Quantum Gravity 25, 114043 (2008)

    Google Scholar 

  6. Y. Aso et al., The KAGRA Collaboration. Phys. Rev D88, 043007 (2011)

    ADS  Google Scholar 

  7. J. Abadie et al., The LIGO Scientific Collaboration and The Virgo Collaboration. Phys. Rev. D81, 102001 (2010)

    ADS  Google Scholar 

  8. The LIGO Scientific Collaboration and The Virgo Collaboration, Nature 460, 990 (2009)

    Google Scholar 

  9. B.P. Abbott et al., The LIGO Scientific Collaboration and The Virgo Collaboration. Ap. J. 713, 671–685 (2010)

    Article  ADS  Google Scholar 

  10. B.P. Abbott et al., The LIGO Scientific Collaboration and The Virgo Collaboration. Ap. J. 715, 1438–1452 (2010)

    Article  ADS  Google Scholar 

  11. J. Abadie et al., The LIGO Scientific Collaboration and The Virgo Collaboration. Ap. J. 715, 1453–1461 (2010)

    Article  ADS  Google Scholar 

  12. Aasi J, et al. The LIGO Collaboration and The Virgo Collaboration, ar**v:1304.0670v1 (2013), to be published on Living reviews of relativity.

    Google Scholar 

  13. F. Halzen, S.R. Klein, Rev. Sci. Instrum. 81, 081101 (2010)

    Article  ADS  Google Scholar 

  14. U.F. Katz, The KM3NET consortium, Nucl. Instrum. Meth. A, S57, 626–627

    Google Scholar 

  15. G.M. Harry, The LIGO Scientific Collaboration. Class. Quantum Gravity 27, 084006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Abadie et al., The LIGO Collaboration and The Virgo Collaboration. Class. Quantum Gravity 27, 173001 (2010)

    Article  ADS  Google Scholar 

  17. S. Fairhurst, Class. Quantum Gravity 28, 105021 (2011)

    Article  ADS  Google Scholar 

  18. T. Accadia et al., The Virgo Collaboration, Proceedings of the MG12 World Scientific Conference, (2012)

    Google Scholar 

  19. The Virgo Collaboration Virgo Internal Report VIR-0128A-12 (2012) https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0128A-12.pdf

  20. T. Uchiyama et al., Phys. Rev. Lett. 108, 141101 (2012)

    Article  ADS  Google Scholar 

  21. B.J. Meers, Phys. Rev. D38, 2317 (1998)

    ADS  Google Scholar 

  22. B. Cimma et al., Appl. Opt. 45, 1436 (2006)

    Article  ADS  Google Scholar 

  23. I.W. Martin et al., Class. Quantum Gravity 25, 055005 (2008)

    Article  ADS  Google Scholar 

  24. S. Braccini et al., The Virgo Collaboration. Astrop. Phys. 23, 557 (2005)

    Article  ADS  Google Scholar 

  25. G. Losurdo et al., Rev. Sci. Instrum. 70, 2508 (1999)

    Article  ADS  Google Scholar 

  26. G. Losurdo et al., Rev. Sci. Instrum. 72, 3653 (2001)

    Article  ADS  Google Scholar 

  27. F. Acernese et al., The Virgo Collaboration. Astrop. Phys. 20, 629 (2004)

    Article  ADS  Google Scholar 

  28. S. Rowan et al., Phys. Lett. A 233, 303 (1997)

    Article  ADS  Google Scholar 

  29. L. Cunningham et al., Phys. Lett. A 374, 3993 (2010)

    Article  ADS  Google Scholar 

  30. F. Acernese et al., The Virgo Collaboration. Astrop. Phys. 33, 182 (2010)

    Article  ADS  Google Scholar 

  31. J. Giaime et al., Rev. Sci. Instrum. 67, 208 (1999)

    Article  ADS  Google Scholar 

  32. B.P. Abbott et al., Class. Quantum Gravity 19, 1591 (2002)

    Article  ADS  Google Scholar 

  33. M. Lorenzini, The Virgo Collaboration. Class. Quantum Gravity 27, 084021 (2010)

    Article  ADS  Google Scholar 

  34. A. Heptonstall et al., LIGO Internal Report, (2005) http://www.ligo.caltech.edu/docs/T/T050206-00.pdf

  35. D.H. Shoemaker et al., Phys. Rev. D38, 423 (1988)

    ADS  Google Scholar 

  36. D.H. Shoemaker, A. Brillet, C.A. Man, O. Cregut, Opt. Lett. 14, 609 (1989)

    Article  ADS  Google Scholar 

  37. O. Cregut et al., Phys. Lett. A 140, 284 (1989)

    Article  ADS  Google Scholar 

  38. F. Bondu, P. Fritschel, C.A. Man, A. Brillet, Opt. Lett., 21, 582 (1996)

    Google Scholar 

  39. R. Barillet et al., Meas. Sci. Tech. 7, 162 (1996)

    Article  ADS  Google Scholar 

  40. B. Willke et al., Class. Quantum Gravity 25, 114040 (2008)

    Article  ADS  Google Scholar 

  41. L. Winkellman et al., Appl. Phys. B 102, 529 (2011)

    Article  ADS  Google Scholar 

  42. P. Hello, J.Y. Vinet, Phys. Lett. A 178, 351 (1993)

    Article  ADS  Google Scholar 

  43. H. Lück et al., Class. Quantum Gravity 21, S985 (2004)

    Article  Google Scholar 

  44. R. Lawrence et al., Class. Quantum Gravity 19, 1803 (2002)

    Article  ADS  Google Scholar 

  45. R. Lawrence, Active wavefront correction in laser interferometric gravitational wave detectors, Ph.D thesis, MIT (2003) http://hdl.handle.net/1721.1/29308

  46. T.L. Kelly et al., Appl. Opt. 46, 861 (2007)

    Article  ADS  Google Scholar 

  47. D.F. Walls, Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  48. T. Eberle et al., Phys. Rev. Lett. 104, 251102 (2010)

    Article  ADS  Google Scholar 

  49. LIGO Scientific Collaboration, Nature Phys. (2011) doi:10.1038/nphys2083

  50. M. Punturo et al., Class. Quantum Gravity 27, 084007 (2010)

    Article  ADS  Google Scholar 

  51. M. Abernathy et al. The ET Science Team, Einstein gravitational wave telescope–conceptual design study, (2011) https://tds.ego-gw.it/itf/tds/file.php?callFile=ET-0106C-10.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Losurdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Losurdo, G. (2014). Towards Gravitational Wave Astronomy. In: Bassan, M. (eds) Advanced Interferometers and the Search for Gravitational Waves. Astrophysics and Space Science Library, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-319-03792-9_1

Download citation

Publish with us

Policies and ethics

Navigation